3 research outputs found

    Influence of snowpack internal structure on snow metamorphism and melting intensity on Hansbreen, Svalbard

    Get PDF
    This paper presents a detailed study of melting processes conducted on Hansbreen – a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted to c. 12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formations and melt-freeze crusts), resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction of rain-on-snow events was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period

    Multidecadal (1960–2011) shoreline changes in Isbjørnhamna (Hornsund, Svalbard)

    Get PDF
    A section of a gravel-dominated coast in Isbjørnhamna (Hornsund, Svalbard) was analysed to calculate the rate of shoreline changes and explain processes controlling coastal zone development over last 50 years. Between 1960 and 2011, coastal landscape of Isbjørnhamna experienced a significant shift from dominated by influence of tide-water glacier and protected by prolonged sea-ice conditions towards storm-affected and rapidly changing coast. Information derived from analyses of aerial images and geomorphological mapping shows that the Isbjørnhamna coastal zone is dominated by coastal erosion resulting in a shore area reduction of more than 31,600 m2. With ~3,500 m2 of local aggradation, the general balance of changes in the study area of the shore is negative, and amounts to a loss of more than 28,000 m2. Mean shoreline change is −13.1 m (−0.26 m a−1). Erosional processes threaten the Polish Polar Station infrastructure and may damage of one of the storage buildings in nearby future
    corecore