1,318 research outputs found

    Angleâ Insensitive and CMOSâ Compatible Subwavelength Color Printing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134900/1/adom201600287_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134900/2/adom201600287.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134900/3/adom201600287-sup-0001-S1.pd

    A Case of Robot-Assisted Laparoscopic Radical Prostatectomy in Primary Small Cell Prostate Cancer

    Get PDF
    Primary small cell carcinoma of the prostate is a rare and very aggressive disease with a poor prognosis, even in its localized form. We managed a case of primary small cell carcinoma of the prostate. The patient was treated with robot-assisted laparoscopic radical prostatectomy and adjuvant chemotherapy. Herein we report this first case of robot-assisted laparoscopic radical prostatectomy performed in a patient with primary small cell carcinoma of the prostate

    Signaling Events During Induction of Plasminogen Activator Inhibitor-1 Expression by Sphingosylphosphorylcholine in Cultured Human Dermal Fibroblasts

    Get PDF
    Sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid metabolite that can enhance wound healing. In a search for effectors downstream of SPC in the wound-healing process, we found that the expression of the gene for plasminogen activator inhibitor-1 (PAI-1) was significantly affected. ELISA and western blot analyses showed that SPC markedly induced PAI-1 production in human dermal fibroblasts cultured in vitro. Inhibition by pre-treatment with pertussis toxin (PTx), but not by tyrphostin A47 (a receptor tyrosine kinase inhibitor), indicated that PTx-sensitive G proteins were involved in SPC-induced PAI-1 expression. SPC elicited a rapid and transient increase in intracellular calcium levels ([Ca2+]i), measured using laser scanning confocal microscopy, which was partly mediated through PTx-sensitive G proteins. Pre-treatment with thapsigargin, but not with EGTA, abolished SPC-induced PAI-1 expression, indicating the importance of Ca2+ release from internal stores. Phorbol-12-myristate-13-acetate (PMA) induced the expression of PAI-1, and pre-treatment with Ro 31-8220 (a PKC inhibitor) markedly suppressed SPC-induced PAI-1 expression. SPC-induced PAI-1 expression was also significantly suppressed by PD98059 (a specific MAPK kinase 1/2 inhibitor). Consistent with this result, SPC stimulated the phosphorylation of p42/44 extracellular signal-regulated kinase (ERK). Together, these results suggest that SPC induces PAI-1 production through a G protein-coupled calcium increase and downstream kinase signaling events in cultured human dermal fibroblasts

    Effect of Combination Therapy with Sodium Ozagrel and Panax Ginseng on Transient Cerebral Ischemia Model in Rats

    Get PDF
    Sodium ozagrel (SO) prevents platelet aggregation and vasoconstriction in the cerebral ischemia. It plays an important role in the prevention of brain damage induced by cerebral ischemia/reperfusion. Recently, many animal studies have suggested that the Panax ginseng (PG) has neuroprotective effects in the ischemic brain. In this study, we assessed the neuroprotective effects that come from a combination therapy of SO and PG in rat models with middle cerebral artery occlusion (MCAO). Animals with MCAO were assigned randomly to one of the following four groups: (1) control (Con) group, (2) SO group (3 mg/kg, intravenously), (3) PG group (200 mg/kg, oral feeding), and (4) SO + PG group. The rats were subjected to a neurobehavior test including adhesive removal test and rotarod test at 1, 3, 7, 10, and 15 days after MCAO. The cerebral ischemic volume was quantified by Metamorph imaging software after 2-3-5-triphenyltetrazolium (TTC) staining. The neuronal cell survival and astrocytes expansion were assessed by immunohistofluorescence staining. In the adhesive removal test, the rats of PG or SO + PG group showed significantly better performance than those of the control group (Con: 88.1 ± 24.8, PG: 43.6 ± 11, SO + PG: 11.8 ± 7, P < .05). Notably, the combination therapy group (SO + PG) showed better performance than the SO group alone (SO: 56 ± 12, SO + PG: 11.8 ± 7, P < .05). In TTC staining for infarct volume, cerebral ischemic areas were also significantly reduced in the PG group and SO + PG group (Con: 219 ± 32, PG: 117 ± 8, SO + PG: 99 ± 11, P < .05). Immunohistofluorescence staining results showed that the group which received SO + PG group therapy had neuron cells in the normal range. They also had a low number of astrocytes and apoptotic cells compared with the control or SO group in the peri-infarction area. During astrocytes staining, compared to the SO + PG group, the PG group showed only minor differences in the number of NeuN-positive cells and quantitative analysis of infarct volume. In conclusion, these studies showed that in MCAO rat models, the combination therapy with SO and PG may provide better neuroprotective effects such as higher neuronal cell survival and inhibition of astrocytes expansion than monotherapy with SO alone

    Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Get PDF
    This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (P < .05). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway

    A Pilot Study for the Neuroprotective Effect of Gongjin-dan on Transient Middle Cerebral Artery Occlusion-Induced Ischemic Rat Brain

    Get PDF
    In this study, we investigated whether gongjin-dan improves functional recovery and has neuroprotective effects on reducing the infarct volume after transient middle cerebral artery occlusion (MCAo). Infarct volume was measured using TTC staining and glucose utilization by F-18 FDG PET. Functional improvement was evaluated with the Rota-rod, treadmill, Garcia score test, and adhesive removal test. At 14 days after MCAo, neuronal cell survival, astrocytes expansion, and apoptosis were assessed by immunohistofluorescence staining in the peri-infarct region. Also, the expression of neurotrophic factors and inflammatory cytokines such as VEGF, BDNF, Cox-2, TNF-α, IL-1β, and IL-1α was measured in ischemic hemisphere regions. The gongjin-dan-treated group showed both reduced infarct volume and increased glucose utilization. Behavior tests demonstrated a significant improvement compared to the control. Also in the gongjin-dan treated group, NeuN-positive cells were increased and number of astrocytes, microglia, and apoptotic cells was significantly decreased compared with the control group in the ischemic peri-infarct area. Furthermore, the expression of VEGF and BDNF was increased and level of Cox-2, TNF-α, IL-1β, and IL-1α was decreased. These results suggest that gongjin-dan may improve functional outcome through the rapid restoration of metabolism and can be considered as a potential neuroprotective agent
    corecore