12,294 research outputs found

    Gravitational Wavetrains in the Quasi-Equilibrium Approximation: A Model Problem in Scalar Gravitation

    Full text link
    A quasi-equilibrium (QE) computational scheme was recently developed in general relativity to calculate the complete gravitational wavetrain emitted during the inspiral phase of compact binaries. The QE method exploits the fact that the the gravitational radiation inspiral timescale is much longer than the orbital period everywhere outside the ISCO. Here we demonstrate the validity and advantages of the QE scheme by solving a model problem in relativistic scalar gravitation theory. By adopting scalar gravitation, we are able to numerically track without approximation the damping of a simple, quasi-periodic radiating system (an oscillating spherical matter shell) to final equilibrium, and then use the exact numerical results to calibrate the QE approximation method. In particular, we calculate the emitted gravitational wavetrain three different ways: by integrating the exact coupled dynamical field and matter equations, by using the scalar-wave monopole approximation formula (corresponding to the quadrupole formula in general relativity), and by adopting the QE scheme. We find that the monopole formula works well for weak field cases, but fails when the fields become even moderately strong. By contrast, the QE scheme remains quite reliable for moderately strong fields, and begins to breakdown only for ultra-strong fields. The QE scheme thus provides a promising technique to construct the complete wavetrain from binary inspiral outside the ISCO, where the gravitational fields are strong, but where the computational resources required to follow the system for more than a few orbits by direct numerical integration of the exact equations are prohibitive.Comment: 15 pages, 14 figure

    Hysteresis and the dynamic phase transition in thin ferromagnetic films

    Full text link
    Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic films subject to an oscillatory external field have been studied by Monte Carlo simulation. The model under investigation is a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry with competing surface fields. The film exhibits a non-equilibrium phase transition between dynamically ordered and dynamically disordered phases characterized by a critical temperature Tcd, whose location of is determined by the amplitude H0 and frequency w of the applied oscillatory field. In the presence of competing surface fields the critical temperature of the ferromagnetic-paramagnetic transition for the film is suppressed from the bulk system value, Tc, to the interface localization-delocalization temperature Tci. The simulations show that in general Tcd < Tci for the model film. The profile of the time-dependent layer magnetization across the film shows that the dynamically ordered and dynamically disordered phases coexist within the film for T < Tcd. In the presence of competing surface fields, the dynamically ordered phase is localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos added; to be published in PR

    Culex tarsalis is a competent vector species for Cache Valley virus

    Get PDF
    Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector

    Quantum Step Heights in Hysteresis Loops of Molecular Magnets

    Full text link
    We present an analytical theory on the heights of the quantum steps observed in the hysteresis loops of molecular magnets. By considering the dipolar interaction between molecular spins, our theory successfully yields the step heights measured in experiments, and reveals a scaling law for the dependence of the heights on the sweeping rates hidden in the experiment data on Fe8_8 and Mn4_4. With this theory, we show how to accurately determine the tunnel splitting of a single molecular spin from the step heights.Comment: 4 pages, 5 figure

    Thermocapillary actuation of liquid flow on chemically patterned surfaces

    Get PDF
    We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies

    Multivariate p-dic L-function

    Full text link
    We construct multivariate p-adic L-function in the p-adic number fild by using Washington method.Comment: 9 page

    Annihilation of Charged Particles

    Full text link
    The kinetics of irreversible annihilation of charged particles performing overdamped motion induced by long-range interaction force, F(r)rλF(r)\sim r^{-\lambda}, is investigated. The system exhibits rich kinetic behaviors depending on the force exponent λ\lambda. In one dimension we find that the densities decay as t1/(2+λ)t^{-1/(2+\lambda)} and t1/(1+2λ)t^{-1/(1+2\lambda)} when λ>1\lambda>1 and 1/2<λ<11/2<\lambda<1, respectively, with logarithmic correction at λ=1\lambda=1. For λ1/2\lambda \leq 1/2, the asymptotic behavior is shown to be dependent on system size.Comment: 17 pages, plain TeX, 3 figures available upon request from [email protected]

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe
    corecore