9 research outputs found

    MMP-Inhibitory Effects of Flavonoid Glycosides from Edible Medicinal Halophyte Limonium tetragonum

    Get PDF
    Limonium tetragonum has been well-known for its antioxidative properties as a halophyte. This study investigated the antimetastasis effect of solvent-partitioned L. tetragonum extracts (LTEs) and isolated compounds on HT1080 mouse melanoma cell model with a focus on matrix metalloproteinase (MMP) activity and TIMP and MAPK pathways. Upregulation and stimulation of MMPs result in elevated degradation of extracellular matrix which is part of several complications such as metastasis, cirrhosis, and arthritis. The anti-MMP capacity of LTEs was confirmed by their MMP-inhibitory effects, regulation of MMP and TIMP expression, and suppression of MAPK pathway. Among all tested LTEs, 85% aq. MeOH and n-BuOH were found to be most active fractions which later yielded two known flavonoid glycosides, myricetin 3-galactoside and quercetin 3-o-beta-galactopyranoside. Anti-MMP potential of the compounds was confirmed by their ability to regulate MMP expression through inhibited MAPK pathway activation. These results suggested that L. tetragonum might serve as a potential source of bioactive substances with effective anti-MMP properties

    OF@TEIN: An OpenFlow-enabled SDN Testbed over International SmartX Rack Sites

    Get PDF
    In this paper, we will discuss our on-going effort for OF@TEIN SDN(Software-Defined Networking) testbed, which currently spans over Korea and fiveSouth-East Asian (SEA) collaborators with internationally deployed OpenFlowenabledSmartX Racks

    Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells

    No full text
    Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. Corydalis heterocarpa is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from C. heterocarpa, and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties

    Effect and Comparison of Luteolin and Its Derivative Sodium Luteolin-4ā€²-sulfonate on Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through AMPK-Mediated PPARĪ³ Signaling

    No full text
    Luteolin is a common phytochemical from the flavonoid family with a flavone structure. Studies reported several bioactivities for luteolin and similar flavones. Attenuating the increased adipogenesis of bone marrow cells (hBM-MSCs) has been regarded as a therapeutic target against osteoporotic bone disorders. In the present study, the potential roles of luteolin and its sulfonic acid derivative luteolin-OSO3Na in regulating adipogenic differentiation of hBM-MSCs were investigated. Adipo-induced cells were treated with or without compounds, and their effect on adipogenesis was evaluated by adipogenic marker levels such as lipid accumulation and PPARĪ³ pathway activation. Luteolin hindered the adipogenic lipid accumulation in adipo-induced hBM-MSCs. Immunoblotting and reverse transcription-polymerase chain reaction analysis results indicated that luteolin downregulated PPARĪ³ and downstream factors of C/EBPĪ± and SREBP1c expression which resulted in inhibition of adipogenesis. Luteolin-OSO3Na showed similar effects; however, it was significantly less effective compared to luteolin. Investigating p38, JNK, and ERK MAPKs and AMPK activation indicated that luteolin suppressed the MAPK phosphorylation while stimulating AMPK phosphorylation. On the other hand, luteolin-OSO3Na was not able to notably affect the MAPK and AMPK activation. In conclusion, this study suggested that luteolin inhibited adipogenic differentiation of hBM-MSCs via upregulating AMPK activation. Replacing its 4ā€²-hydroxyl group with sulfonic acid sodium salt diminished its antiadipogenic effect indicating its role in regulating AMPK activation. The general significance is that luteolin is a common phytochemical with various health-beneficial effects. The current study suggested that luteolin may serve as a lead compound for developing antiosteoporotic substances with antiadipogenic properties

    Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    No full text
    The inhibitory effect of three chromones 1ā€“3 and two coumarins 4ā€“5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-Ī± (TNF-Ī±), interleukin-1Ī² (IL-1Ī²) and interleukin-6 (IL-6)

    Highly Sensitive and Durable Organic Photodiodes Based on Long-Term Storable NiO<sub><i>x</i></sub> Nanoparticles

    No full text
    Organic optoelectronic devices that can be fabricated at low cost have attracted considerable attention because they can absorb light over a wide frequency range and have high conversion efficiency, as well as being lightweight and flexible. Moreover, their performance can be significantly affected by the choice of the charge-selective interlayer material. Nonstoichiometric nickel oxide (NiOx) is an excellent material for the hole-transporting layer (HTL) of organic optoelectronic devices because of the good alignment of its valence band position with the highest occupied molecular orbital level of many p-type polymers. Herein, we report a simple low-temperature process for the synthesis of NiOx nanoparticles (NPs) that can be well dispersed in solution for long-term storage and easily used to form thin NiOx NP layers. NiOx NP-based organic photodiode (OPD) devices demonstrated high specific detectivity (D*) values of 1012-1013 jones under various light intensities and negative biases. The D??? value of the NiOx NP-based OPD device was 4 times higher than that of a conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based device, an enhancement that originated mainly from the 16 times decreased leakage current. The NiOx NP-based OPD device demonstrated better reliability over a wide range of light intensities and operational biases in comparison to a device with a conventional sol-gel-processed NiOx film. More importantly, the NiOx NP-based OPD showed long-term device stability superior to those of the PEDOT:PSS and sol-gel-processed NiOx-based devices. We highlight that our low-temperature solution-processable NiOx NP-based HTL could become a crucial component in the fabrication of stable high-performance OPDs. ?? 2022 American Chemical Society. All rights reserved

    A Multifunctional Self-Assembled Monolayer for Highly Luminescent Pure-Blue Quasi-2D Perovskite Light-Emitting Diodes

    No full text
    Quasi-2D perovskite materials have promise to unlock the full potential of blue perovskite light-emitting diodes (PeLEDs). However, the efficiency of blue emissive PeLEDs still lags behind the green- and red-emitting counterparts. Here, a multifunctional passivating molecule of (2-(3,6-dichloro-9H-carbazol-9-yl)ethyl)phosphonic acid (36ClCzEPA) that can form a self-assembled monolayer (SAM) on the indium tin oxide (ITO) electrode is reported. The 36ClCzEPA SAM facilitates hole injection by increasing the work function of ITO through the strong interfacial dipole layer formation at the interface between the perovskite emitter and the ITO electrode. Moreover, it allows a pure-blue emission and reduces the exciton quenching of luminescence in the perovskite emitter considerably because of its neutral nature, compared to the commonly used acidic PEDOT:PSS. Furthermore, chlorine atoms in the 36ClCzEPA promote well-ordered crystalline 2D perovskite phases and decrease interfacial trap-assisted deactivation channels by interfacial passivation. These beneficial characteristics of the 36ClCzEPA SAM yield the excellent luminescence property of PeLEDs with a maximum luminance of 1253 cd m(-2) and a peak external quantum efficiency of 4.80% at 473 nm. This work demonstrates that a well-designed molecule forming an interfacial SAM can be an important component for enhancing the luminescence property of pure-blue PeLEDs
    corecore