48 research outputs found
In Vitro Exploration of ACAT Contributions to Lipid Droplet Formation During Adipogenesis
As adipose tissue is the major cholesterol storage organ and most of the intracellular cholesterol is distributed to lipid droplets (LDs), cholesterol homeostasis may have a role in the regulation of adipocyte size and function. ACATs catalyze the formation of cholesteryl ester (CE) from free cholesterol to modulate the cholesterol balance. Despite the well-documented role of ACATs in hypercholesterolemia, their role in LD development during adipogenesis remains elusive. Here, we identify ACATs as regulators of de novo lipogenesis and LD formation in murine 3T3-L1 adipocytes. Pharmacological inhibition of ACAT activity suppressed intracellular cholesterol and CE levels, and reduced expression of genes involved in cholesterol uptake and efflux. ACAT inhibition resulted in decreased de novo lipogenesis, as demonstrated by reduced maturation of SREBP1 and SREBP1-downstream lipogenic gene expression. Consistent with this observation, knockdown of either ACAT isoform reduced total adipocyte lipid content by approximately 40%. These results demonstrate that ACATs are required for storage ability of lipids and cholesterol in adipocytes
ANTIOXIDANT ACTIVITY AND HPLC ANALYSIS OF LYCOPENE, Β-CAROTENE AND Α-TOCOPHEROL FROM GEUK (MOMORDICA COCHINCHINESIS SPRENG) FRUIT
Geuk (Momordica cochinchinensis spreng) tropical fruits, which are produced in Jeju Island, Korea, well known for containing high levels of carotenoids and α-tocopherol. In this study, geuk fruits were separated two parts (pulp; yellow-orange and seed aril; red). The extracts of geuk fruits were simultaneously analyzed for carotenoids and α-tocopherol contents using HPLC. The results showed that lycopene contained as the highest content in both seed aril and pulp and seed aril (846.84 μg/g) had lycopene two times more than pulp (390.15 μg/g). On the other hand, β-carotene of pulp (29.43 μg/g) was seven times more than seed aril (211.32 μg/g). α-Tocopherol was contained higher in seed aril (252.15 μg/g) than pulp (201.60 μg/g). The extracts and major components of geuk fruits (β-carotene, lycopene and α-tocopherol) were evaluated antioxidant activity using DPPH and ABTS assay. In both tested antioxidant assay, the seed aril extract showed stronger activity than the pulp extract. Lycopene, was more efficient than β-carotene, was active similar with α-tocopherol. Owing to the geuk fruits have powerful antioxidants, such as lycopene, β-carotene and α-tocopherol, which suggest that geuk fruits in the diet or in functional food products might provide greater health beneficial effects
Mori Cortex Radicis Attenuates High Fat Diet-Induced Cognitive Impairment via an IRS/Akt Signaling Pathway
Present study was conducted to investigate ameliorating effects of Mori Cortex radicis on cognitive impair and neuronal defects in HFD-induced (High Fat Diet-Induced) obese mice. To induce obesity, C57BL/6 mice were fed an HFD for 8 weeks, and then mice were fed the HFD plus Mori Cortex radicis extract (MCR) (100 or 200 mg/kg/day) for 6 weeks. Prior to sacrifice, body weights were measured, and Y-maze test and oral glucose tolerance test were performed. Serum lipid metabolic biomarkers (TG, LDL, and HDL/total cholesterol ratio) and antioxidant enzymes (glutathione, superoxide dismutase, and catalase), malondialdehyde (MDA), and acetylcholinesterase (AChE) levels were measured in brain tissues. The expressions of proteins related to insulin signaling (p-IRS, PI3K, p-Akt, and GLUT4) and neuronal protection (p-Tau, Bcl-2, and Bax) were examined. MCR suppressed weight gain, improved serum lipid metabolic biomarker and glucose tolerance, inhibited AChE levels and MDA production, and restored antioxidant enzyme levels in brain tissue. In addition, MCR induced neuronal protective effects by inhibiting p-Tau expression and increasing Bcl-2/Bax ratio, which was attributed to insulin-induced increases in the expressions p-IRS, PI3K, p-Akt, and GLUT4. These indicate MCR may reduce HFD-induced insulin dysfunction and neuronal damage and suggest MCR be considered a functional material for the prevention of T2DM-associated neuronal disease
Autumn Olive (<i>Elaeagnus umbellata</i> Thunb.) Berries Improve Lipid Metabolism and Delay Aging in Middle-Aged <i>Caenorhabditis elegans</i>
This study evaluated the positive effects of autumn olive berries (AOBs) extract on delaying aging by improving lipid metabolism in middle-aged Caenorhabditis elegans that had become obese due to a high-glucose (GLU) diet. The total phenolic content and DPPH radical scavenging abilities of freeze-dried AOBs (FAOBs) or spray-dried AOBs (SAOBs) were examined, and FAOBs exhibited better antioxidant activity. HPLC analysis confirmed that catechin is the main phenolic compound of AOBs; its content was 5.95 times higher in FAOBs than in SAOBs. Therefore, FAOBs were used in subsequent in vivo experiments. FAOBs inhibited lipid accumulation in both the young adult and middle-aged groups in a concentration-dependent manner under both normal and 2% GLU conditions. Additionally, FAOBs inhibited ROS accumulation in a concentration-dependent manner under normal and 2% GLU conditions in the middle-aged worms. In particular, FAOB also increased body bending and egg production in middle-aged worms. To confirm the intervention of genetic factors related to lipid metabolism from the effects of FAOB, body lipid accumulation was confirmed using worms deficient in the daf-16, atgl-1, aak-1, and akt-1 genes. Regarding the effect of FAOB on reducing lipid accumulation, the impact was nullified in daf-16-deficient worms under the 2% GLU condition, and nullified in both the daf-16- and atgl-1-deficient worms under fasting conditions. In conclusion, FAOB mediated daf-16 and atgl-1 to regulate lipogenesis and lipolysis in middle-aged worms. Our findings suggest that FAOB improves lipid metabolism in metabolically impaired middle-aged worms, contributing to its age-delaying effect
Antioxidant Capacity of Thistle (Cirsium japonicum) in Various Drying Methods and their Protection Effect on Neuronal PC12 cells and Caenorhabditis elegans
The aim of this study was, firstly, to evaluate the phenol profile of thistle (Cirsium japonicum, CJ) by High performance liquid chromatography-electrospray ionization–mass spectrometry (HPLC–ESI–MS), dried by different methods (90 °C hot-air, 70 °C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 °C and 70 °C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and Caenorhabditis elegans using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in C. elegans. Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth
The Effect of Juingong Meditation on the Theta to Alpha Ratio in the Temporoparietal and Anterior Frontal EEG Recordings
(1) Background: The effect of Juingong meditation on brainwave patterns has not been explored yet. This study aimed to study the changes in brainwave patterns produced by Juingong meditation, through electroencephalography (EEG) measurements. (2) Methods: The study included 23 participants from the Hanmaum Seon Center in Korea. EEG measurements were performed using InteraXon’s four-channel EEG measurement equipment, Muse. It measures EEG patterns in the temporoparietal and anterior frontal lobes. Brainwaves were measured in two different states: when Juingong meditation was practiced and when instructed mind wandering (IMW) was practiced. The EEG recordings were analyzed using the theta/alpha index. (3) Results: In the Juingong meditation state, the power of alpha was relatively higher than that of theta and these results were valid in the temporal parietal lobe channel. This indicates that relatively more alpha waves were induced in the temporal parietal lobe when Juingong meditation was practiced. (4) Conclusions: When Juingong meditation is practiced, the theta/alpha ratio changes without delay, which means that the practical effect of Juingong meditation on brainwave patterns is immediately apparent
Antioxidant Capacity of Thistle (Cirsium japonicum) in Various Drying Methods and their Protection Effect on Neuronal PC12 cells and Caenorhabditis elegans
The aim of this study was, firstly, to evaluate the phenol profile of thistle (Cirsium japonicum, CJ) by High performance liquid chromatography-electrospray ionization–mass spectrometry (HPLC–ESI–MS), dried by different methods (90 ◦C hot-air, 70 ◦C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 ◦C and 70 ◦C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and Caenorhabditis elegans using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in C. elegans. Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth