1,415 research outputs found

    Prompt Injection: Parameterization of Fixed Inputs

    Full text link
    Recent works have shown that attaching prompts to the input is effective at conditioning Language Models (LM) to perform specific tasks. However, prompts are always included in the input text during inference, thus incurring substantial computational and memory overhead. Also, there is currently no straightforward method of utilizing prompts that are longer than the maximum input length of the LMs without incurring additional costs during inference. We propose Prompt Injection (PI), a novel formulation of injecting the prompt into the parameters of an LM to be an efficient alternative to attaching fixed prompts to the input. We show that in scenarios with long fixed prompts, PI can be up to 280 times more efficient in terms of total FLOPs than previous approaches. We further explore methodologies for PI and show promising results in persona-dependent conversation, semantic parsing, and zero-shot learning with task instructions. Through these explorations, we show that PI can be a promising direction for conditioning language models, especially in scenarios with long and fixed prompts.Comment: PING results in Table 2 updated (bug fixed

    Continually Updating Generative Retrieval on Dynamic Corpora

    Full text link
    Generative retrieval has recently been gaining a lot of attention from the research community for its simplicity, high performance, and the ability to fully leverage the power of deep autoregressive models. However, prior work on generative retrieval has mostly investigated on static benchmarks, while realistic retrieval applications often involve dynamic environments where knowledge is temporal and accumulated over time. In this paper, we introduce a new benchmark called STREAMINGIR, dedicated to quantifying the generalizability of retrieval methods to dynamically changing corpora derived from StreamingQA, that simulates realistic retrieval use cases. On this benchmark, we conduct an in-depth comparative evaluation of bi-encoder and generative retrieval in terms of performance as well as efficiency under varying degree of supervision. Our results suggest that generative retrieval shows (1) detrimental performance when only supervised data is used for fine-tuning, (2) superior performance over bi-encoders when only unsupervised data is available, and (3) lower performance to bi-encoders when both unsupervised and supervised data is used due to catastrophic forgetting; nevertheless, we show that parameter-efficient measures can effectively mitigate the issue and result in competitive performance and efficiency with respect to the bi-encoder baseline. Our results open up a new potential for generative retrieval in practical dynamic environments. Our work will be open-sourced.Comment: Work in progres

    Efficiently Enhancing Zero-Shot Performance of Instruction Following Model via Retrieval of Soft Prompt

    Full text link
    Enhancing the zero-shot performance of instruction-following models requires heavy computation, either by scaling the total number of training datasets or the model size. In this work, we explore how retrieval of soft prompts obtained through prompt tuning can efficiently assist hard prompts in zero-shot task generalization. Specifically, we train soft prompt embeddings for each prompt through prompt tuning, store the samples of the training instances mapped with the prompt embeddings, and retrieve the corresponding prompt embedding of the training instance closest to the query instance during inference. While only adding 0.007% additional parameters, retrieval of soft prompt enhances the performance of T0 on unseen tasks by outperforming it on 10 out of 11 datasets as well as improving the mean accuracy of T0 on BIG-bench benchmark by 2.39% points. Also, we report an interesting finding that retrieving source embeddings trained on similar answer choice formats is more important than those on similar task types.Comment: EMNLP 2023 Finding

    Electrostatic Steering of Thermal Emission with Active Metasurface Control of Delocalized Modes

    Full text link
    We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric slab that acts as a Fabry-Perot (F-P) resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the F-P mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250∘^{\circ}. Our results show that electrostatic control allows the thermal emission at 6.61 μ\mum to be continuously steered over 16∘^{\circ}, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures.Comment: 8 pages, 4 figure

    Knowledge Unlearning for Mitigating Privacy Risks in Language Models

    Full text link
    Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for language models has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply applying the unlikelihood training objective to target token sequences is effective at forgetting them with little to no degradation of general language modeling performances; it sometimes even substantially improves the underlying LM with just a few iterations. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with a previous data preprocessing method known to mitigate privacy risks for LMs, we show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being orders of magnitude more computationally efficient. We release the code and dataset needed to replicate our results at https://github.com/joeljang/knowledge-unlearning

    How Well Do Large Language Models Truly Ground?

    Full text link
    Reliance on the inherent knowledge of Large Language Models (LLMs) can cause issues such as hallucinations, lack of control, and difficulties in integrating variable knowledge. To mitigate this, LLMs can be probed to generate responses by grounding on external context, often given as input (knowledge-augmented models). Yet, previous research is often confined to a narrow view of the term "grounding", often only focusing on whether the response contains the correct answer or not, which does not ensure the reliability of the entire response. To address this limitation, we introduce a strict definition of grounding: a model is considered truly grounded when its responses (1) fully utilize necessary knowledge from the provided context, and (2) don't exceed the knowledge within the contexts. We introduce a new dataset and a grounding metric to assess this new definition and perform experiments across 13 LLMs of different sizes and training methods to provide insights into the factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications

    The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning

    Full text link
    Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.Comment: EMNLP 2023 (Main Conference

    Personalized Soups: Personalized Large Language Model Alignment via Post-hoc Parameter Merging

    Full text link
    While Reinforcement Learning from Human Feedback (RLHF) aligns Large Language Models (LLMs) with general, aggregate human preferences, it is suboptimal for learning diverse, individual perspectives. In this work, we study Reinforcement Learning from Personalized Human Feedback (RLPHF) problem, wherein LLMs are aligned to multiple (sometimes conflicting) preferences by modeling alignment as a Multi-Objective Reinforcement Learning (MORL) problem. Compared to strong single-objective baselines, we show that we can achieve personalized alignment by decomposing preferences into multiple dimensions. These dimensions are defined based on personalizations that are declared as desirable by the user. In this work, we show that they can be efficiently trained independently in a distributed manner and combined effectively post-hoc through parameter merging. The code is available at https://github.com/joeljang/RLPHF.Comment: Preprin
    • …
    corecore