8 research outputs found

    Continuous non-destructive conductivity monitoring of chondrogenesis using bioimpedance tensor probe

    Get PDF
    A continuous non-destructive monitoring method is required to apply proper feedback controls during chondrogenesis. We measured the apparent conductivity and the amount of anisotropy on the top and bottom surfaces of samples in the chondrogenesis process to evaluate the ECM structure and composition changes. We compared them with histological trait to analyse the results

    Multi-channel Trans-impedance Leadforming for Cardiopulmonary Monitoring: Algorithm Development and Feasibility Assessment using In Vivo Animal Data

    No full text
    IEEEObjective: The objectives of this study were to (1) develop a multi-channel trans-impedance leadforming method for beat-to-beat stroke volume (SV) and breath-by-breath tidal volume (TV) measurements and (2) assess its feasibility on an existing in vivo animal dataset. Methods: A deterministic leadforming algorithm was developed to extract a cardiac volume signal (CVS) and a respiratory volume signal (RVS) from 208-channel trans-impedance data acquired every 20 ms by an electrical impedance tomography (EIT) device. SV<sub>EIT</sub> and TV<sub>EIT</sub> values were computed as a valley-to-peak value in the CVS and RVS, respectively. The method was applied to the existing dataset from five mechanically-ventilated pigs undergoing ten mini-fluid challenges. An invasive hemodynamic monitor was used in the arterial pressure-based cardiac output (APCO) mode to simultaneously measure SV<sub>APCO</sub> values while a mechanical ventilator provided TV<sub>Vent</sub> values. Results: The leadforming method could reliably extract the CVS and RVS from the 208-channel trans-impedance data measured with the EIT device, from which SV<sub>EIT</sub> and TV<sub>EIT</sub> were computed. The SV<sub>EIT</sub> and TV<sub>EIT</sub> values were comparable to those from the invasive hemodynamic monitor and mechanical ventilator. Using the data from 5 pigs and a simple calibration method to remove bias, the error in SV<sub>EIT<sub> and TV<sub>EIT<sub> was 9.5% and 5.4%, respectively. Conclusion: We developed a new leadforming method for the EIT device to robustly extract both SV and TV values in a deterministic fashion. Future animal and clinical studies are needed to validate this leadforming method in various subject populations. Significance: The leadforming method could be an integral component for a new cardiopulmonary monitor in the future to simultaneously measure SV and TV noninvasively, which would be beneficial to patients.11Nsciescopu

    Comparison of noninvasive cardiac output and stroke volume measurements using electrical impedance tomography with invasive methods in a swine model

    No full text
    Abstract Pulmonary artery catheterization (PAC) has been used as a clinical standard for cardiac output (CO) measurements on humans. On animals, however, an ultrasonic flow sensor (UFS) placed around the ascending aorta or pulmonary artery can measure CO and stroke volume (SV) more accurately. The objective of this paper is to compare CO and SV measurements using a noninvasive electrical impedance tomography (EIT) device and three invasive devices using UFS, PAC-CCO (continuous CO) and arterial pressure-based CO (APCO). Thirty-two pigs were anesthetized and mechanically ventilated. A UFS was placed around the pulmonary artery through thoracotomy in 11 of them, while the EIT, PAC-CCO and APCO devices were used on all of them. Afterload and contractility were changed pharmacologically, while preload was changed through bleeding and injection of fluid or blood. Twenty-three pigs completed the experiment. Among 23, the UFS was used on 7 pigs around the pulmonary artery. The percentage error (PE) between COUFS and COEIT was 26.1%, and the 10-min concordance was 92.5%. Between SVUFS and SVEIT, the PE was 24.8%, and the 10-min concordance was 94.2%. On analyzing the data from all 23 pigs, the PE between time-delay-adjusted COPAC-CCO and COEIT was 34.6%, and the 10-min concordance was 81.1%. Our results suggest that the performance of the EIT device in measuring dynamic changes of CO and SV on mechanically-ventilated pigs under different cardiac preload, afterload and contractility conditions is at least comparable to that of the PAC-CCO device. Clinical studies are needed to evaluate the utility of the EIT device as a noninvasive hemodynamic monitoring tool

    Noninvasive Beat-To-Beat Stroke Volume Measurements to Determine Preload Responsiveness During Mini-Fluid Challenge in a Swine Model: A Preliminary Study

    No full text
    Cardiac output (CO) is an important parameter in fluid management decisions for treating hemodynamically unstable patients in intensive care unit. The gold standard for CO measurements is the thermodilution method, which is an invasive procedure with intermittent results. Recently, electrical impedance tomography (EIT) has emerged as a new method for noninvasive measurements of stroke volume (SV). The objectives of this paper are to compare EIT with an invasive pulse contour analysis (PCA) method in measuring SV during mini-fluid challenge in animals and determine preload responsiveness with EIT. Five pigs were anesthetized and mechanically ventilated. After removing 25% to 30% of the total blood from each animal, multiple fluid injections were conducted. The EIT device successfully tracked changes in SV beat-to-beat during varying volume states, i.e., from hypovolemia and preload responsiveness to target volume and volume overload. From a total of 50 100-mL fluid injections on five pigs (10 injections per pig), the preload responsiveness value was as large as 32.3% in the preload responsiveness state while in the volume overload state it was as low as -4.9%. The bias of the measured SV data using EIT and PCA was 0 mL, and the limits of agreement were +/- 3.6 mL in the range of 17.6 mL to 51.0 mL. The results of the animal experiments suggested that EIT is capable of measuring beat-to-beat SV changes during mini-fluid challenge and determine preload responsiveness. Further animal and clinical studies will be needed to demonstrate the feasibility of the EIT method as a new tool for fluid management.11Nsciescopu

    Respiration monitoring in PACU using ventilation and gas exchange parameters

    No full text
    The importance of perioperative respiration monitoring is highlighted by high incidences of postoperative respiratory complications unrelated to the original disease. The objectives of this pilot study were to (1) simultaneously acquire respiration rate (RR), tidal volume (TV), minute ventilation (MV), SpO(2) and PetCO(2) from patients in post-anesthesia care unit (PACU) and (2) identify a practical continuous respiration monitoring method by analyzing the acquired data in terms of their ability and reliability in assessing a patient's respiratory status. Thirteen non-intubated patients completed this observational study. A portable electrical impedance tomography (EIT) device was used to acquire RREIT, TV and MV, while PetCO(2), RRCap and SpO(2) were measured by a Capnostream35. Hypoventilation and respiratory events, e.g., apnea and hypopnea, could be detected reliably using RREIT, TV and MV. PetCO(2) and SpO(2) provided the gas exchange information, but were unable to detect hypoventilation in a timely fashion. Although SpO(2) was stable, the sidestream capnography using the oronasal cannula was often unstable and produced fluctuating PetCO(2) values. The coefficient of determination (R-2) value between RREIT and RRCap was 0.65 with a percentage error of 52.5%. Based on our results, we identified RR, TV, MV and SpO(2) as a set of respiratory parameters for robust continuous respiration monitoring of non-intubated patients. Such a respiration monitor with both ventilation and gas exchange parameters would be reliable and could be useful not only for respiration monitoring, but in making PACU discharge decisions and adjusting opioid dosage on general hospital floor. Future studies are needed to evaluate the potential clinical utility of such an integrated respiration monitor.11Ysciescopu

    Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration

    No full text
    Enpp2 is an enzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which exhibits a wide variety of biological functions. Here, we examined the biological effects of Enpp2 on dendritic cells (DCs), which are specialized antigen-presenting cells (APCs) characterized by their ability to migrate into secondary lymphoid organs and activate naïve T-cells. DCs were generated from bone marrow progenitors obtained from C57BL/6 mice. Enpp2 levels in DCs were regulated using small interfering (si)RNA or recombinant Enpp2. Expression of Enpp2 in LPS-stimulated mature (m)DCs was high, however, knocking down Enpp2 inhibited mDC function. In addition, the migratory capacity of mDCs increased after treatment with rmEnpp2; this phenomenon was mediated via the RhoA-mediated signaling pathway. Enpp2-treated mDCs showed a markedly increased capacity to migrate to lymph nodes in vivo. These findings strongly suggest that Enpp2 is necessary for mDC migration capacity, thereby increasing our understanding of DC biology. We postulate that regulating Enpp2 improves DC migration to lymph nodes, thus improving the effectiveness of cancer vaccines based on DC
    corecore