75 research outputs found
Epigenetics and Drug Abuse
Gene expression and inheritance are not only a function of the DNA code, but also epigenetic mechanisms that regulate DNA accessibility, transcription, and translation of the genetic code into a functional protein. Epigenetic mechanisms are invoked by life experiences, including stress and exposure to drugs of abuse, and the resulting changes in gene expression can be inherited by future generations. This chapter highlights recent research demonstrating epigenetic changes in response to drug exposure with a focus on three different mechanisms: DNA methylation, histone modification, and noncoding RNAs. We briefly describe each of these mechanisms and then provide key examples of drug-induced changes involving these mechanisms, as well as epigenetic manipulations that alter effects of drugs. We then review cutting-edge technologies, including viral-mediated gene transfer and gene editing, that are being used to manipulate epigenetic processes with temporal and cell-type specificity. We also describe and provide examples of intergenerational epigenetic modifications, a topic that has interesting implications for how addiction-related traits may be passed down across generations. Finally, we discuss how this research provides a greater understanding of drug addiction and may lead to novel molecular targets for preventions and interventions for drug abuse
HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.Temple University. School of PharmacyPharmaceutical Science
Addendum: Effects of a 5-HT1B Receptor Agonist on Locomotion and Reinstatement of Cocaine-Conditioned Place Preference after Abstinence from Repeated Injections in Mice
Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons
Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine’s EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence
Sleep Deprivation Dysregulates Brain Reward Circuitry: Implications for Psychiatric Disorders
Changes in behavioral sensitivity to SKF-38393 and quinpirole following withdrawal from continuous cocaine administration in rats
The effects of the selective 5‐HT <sub>1B</sub> receptor agonist, CP94253, on cocaine seeking and anxiety
Regulation of Voluntary Physical Activity Behavior: A Review of Evidence Involving Dopaminergic Pathways in the Brain
Physical activity leads to well-established health benefits. Current efforts to enhance physical activity have targeted mainly socioeconomic factors. However, despite these efforts, only a small number of adults engage in regular physical activity to the point of meeting current recommendations. Evidence collected in rodent models and humans establish a strong central nervous system component that regulates physical activity behavior. In particular, dopaminergic pathways in the central nervous system are among the best-characterized biological mechanisms to date with respect to regulating reward, motivation, and habit formation, which are critical for establishing regular physical activity. Herein, we discuss evidence for a role of brain dopamine in the regulation of voluntary physical activity behavior based on selective breeding and pharmacological studies in rodents, as well as genetic studies in both rodents and humans. While these studies establish a role of dopamine and associated mechanisms in the brain in the regulation of voluntary physical activity behavior, there is clearly need for more research on the underlying biology involved in motivation for physical activity and the formation of a physical activity habit. Such knowledge at the basic science level may ultimately be translated into better strategies to enhance physical activity levels within the society.</jats:p
Extinction under a behavioral microscope: Isolating the sources of decline in operant response rate
Extinction performance is often used to assess underlying psychological processes without the interference of reinforcement. For example, in the extinction/reinstatement paradigm, motivation to seek drug is assessed by measuring responding elicited by drug-associated cues without drug reinforcement. Nonetheless, extinction performance is governed by several psychological processes that involve motivation, memory, learning, and motoric functions. These processes are confounded when overall response rate is used to measure performance. Based on evidence that operant responding occurs in bouts, this paper proposes an analytic procedure that separates extinction performance into several behavioral components: 1) the baseline bout initiation rate, within-bout response rate, and bout length at the onset of extinction; 2) their rates of decay during extinction; 3) the time between extinction onset and the decline of responding; 4) the asymptotic response rate at the end of extinction; 5) the refractory period after each response. Data that illustrate the goodness of fit of this analytic model are presented. This paper also describes procedures to 1) isolate behavioral components contributing to extinction performance; 2) make inferences about experimental effects on these components. This microscopic behavioral analysis allows the mapping of different psychological processes to distinct behavioral components implicated in extinction performance, which may further our understanding of the psychological effects of neurobiological treatments
Anatomical localization of SKF-38393-induced behaviors in rats using the irreversible monoamine receptor antagonist EEDQ
- …
