5 research outputs found
Recommended from our members
Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing
Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods: We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results: The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion: The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing
NOD2 genetic variants and sarcoidosis-associated uveitis
Purpose: Identifying genetic risk factors for developing sarcoidosis-associated uveitis could provide insights into its pathogenesis which is poorly understood.
We determine if variants in NOD2 confer an increased risk of developing uveitis in adults with sarcoidosis.
Methods: In this genetic case-control study, 51 total subjects were enrolled: 39 patients diagnosed with sarcoid-related uveitis and 12 patients with systemic sarcoidosis without ocular involvement as controls. Sanger sequencing of the eleven exons of the NOD2 gene was performed on DNA obtained from whole blood. Sanger sequencing data were aligned against the NOD2 NCBI-RefSeq reference sequence to identify novel mutations in uveitis patients. For common variants, allele frequencies in cases versus controls were compared using the chi-square test.
Results: There were no significant differences in NOD2 common variant allele frequencies between sarcoidosis patients with and without uveitis, and none of the pathogenic NOD2 mutations associated with Blau syndrome were found in this cohort. However, four rare, non-synonymous variants were identified in four patients with ocular sarcoidosis and none of the controls. Variants rs149071116, rs35285618, and 16:g.50745164T > C have never been previously reported to be associated with any disease and may be pathogenic. The fourth variant, rs2066845, is associated with Crohn’s disease and psoriatic arthritis.
Conclusions: Despite the phenotypic overlap between sarcoidosis and Blau syndrome, none of the established pathogenic NOD2 variants were present in adults with sarcoidosis. However, four novel, rare, non-synonymous variants were identified in four cases with ocular sarcoidosis. Further investigation is needed to explore the potential clinical significance of these polymorphisms
Recommended from our members
NOD2 genetic variants and sarcoidosis-associated uveitis☆
Purpose Identifying genetic risk factors for developing sarcoidosis-associated uveitis could provide insights into its pathogenesis which is poorly understood. We determine if variants in NOD2 confer an increased risk of developing uveitis in adults with sarcoidosis. Methods: In this genetic case-control study, 51 total subjects were enrolled: 39 patients diagnosed with sarcoid-related uveitis and 12 patients with systemic sarcoidosis without ocular involvement as controls. Sanger sequencing of the eleven exons of the NOD2 gene was performed on DNA obtained from whole blood. Sanger sequencing data were aligned against the NOD2 NCBI-RefSeq reference sequence to identify novel mutations in uveitis patients. For common variants, allele frequencies in cases versus controls were compared using the chi-square test. Results: There were no significant differences in NOD2 common variant allele frequencies between sarcoidosis patients with and without uveitis, and none of the pathogenic NOD2 mutations associated with Blau syndrome were found in this cohort. However, four rare, non-synonymous variants were identified in four patients with ocular sarcoidosis and none of the controls. Variants rs149071116, rs35285618, and 16:g.50745164T > C have never been previously reported to be associated with any disease and may be pathogenic. The fourth variant, rs2066845, is associated with Crohn’s disease and psoriatic arthritis. Conclusions: Despite the phenotypic overlap between sarcoidosis and Blau syndrome, none of the established pathogenic NOD2 variants were present in adults with sarcoidosis. However, four novel, rare, non-synonymous variants were identified in four cases with ocular sarcoidosis. Further investigation is needed to explore the potential clinical significance of these polymorphisms
Recommended from our members
Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status
Purpose Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1, the gene most commonly involved in dominantly inherited optic atrophy. Methods: Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1, OPA3, WFS1, and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. Results: Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1. Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1. OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). Conclusions: Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1, underscores the need for genetic testing to establish an OPA1 genetic diagnosis