167 research outputs found

    Multiplatform genome-wide identification and modeling of functional human estrogen receptor binding sites

    Get PDF
    BACKGROUND: Transcription factor binding sites (TFBS) impart specificity to cellular transcriptional responses and have largely been defined by consensus motifs derived from a handful of validated sites. The low specificity of the computational predictions of TFBSs has been attributed to ubiquity of the motifs and the relaxed sequence requirements for binding. We posited that the inadequacy is due to limited input of empirically verified sites, and demonstrated a multiplatform approach to constructing a robust model. RESULTS: Using the TFBS for the estrogen receptor (ER)α (estrogen response element [ERE]) as a model system, we extracted EREs from multiple molecular and genomic platforms whose binding to ERα has been experimentally confirmed or rejected. In silico analyses revealed significant sequence information flanking the standard binding consensus, discriminating ERE-like sequences that bind ERα from those that are nonbinders. We extended the ERE consensus by three bases, bearing a terminal G at the third position 3' and an initiator C at the third position 5', which were further validated using surface plasmon resonance spectroscopy. Our functional human ERE prediction algorithm (h-ERE) outperformed existing predictive algorithms and produced fewer than 5% false negatives upon experimental validation. CONCLUSION: Building upon a larger experimentally validated ERE set, the h-ERE algorithm is able to demarcate better the universe of ERE-like sequences that are potential ER binders. Only 14% of the predicted optimal binding sites were utilized under the experimental conditions employed, pointing to other selective criteria not related to EREs. Other factors, in addition to primary nucleotide sequence, will ultimately determine binding site selection

    Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial.

    Get PDF
    BACKGROUND Use of maintenance antibiotic therapy with the macrolide azithromycin is increasing in a number of chronic respiratory disorders including primary ciliary dyskinesia (PCD). However, evidence for its efficacy in PCD is lacking. We aimed to determine the efficacy and safety of azithromycin maintenance therapy for 6 months in patients with PCD. METHODS The Better Experimental Screening and Treatment for Primary Ciliary Dyskinesia (BESTCILIA) trial was a multicentre, double-blind, parallel group, randomised, placebo-controlled phase 3 trial done at 6 European PCD clinics (tertiary paediatric care centres and university hospitals in Denmark, Germany, Netherlands, Switzerland, and UK). Patients with a confirmed diagnosis of PCD, aged 7-50 years old, and predicted FEV1 greater than 40% were recruited. Participants were randomly assigned (1:1), stratified by age and study site, via a web-based randomisation system to azithromycin 250 mg or 500 mg as tablets according to bodyweight (</≥ 40 kg) or identical placebo, three times a week for 6 months. The random allocation sequence was a permuted block randomisation, with a block size of four, generated by an external consultancy. Participants, investigators, and care providers were masked to treatment allocation. The primary endpoint was the number of respiratory exacerbations over 6 months. Analysis was by intention to treat. This study is registered in the EU Clinical Trials Register, EudraCT number 2013-004664-58. FINDINGS Between June 24, 2014, and Aug 23, 2016, 102 patients were screened, of whom 90 were randomly assigned to either azithromycin (n=49) or placebo (n=41). The study was ended without having included the planned number of participants due to recruitment difficulties. The mean number of respiratory exacerbations over 6 months was 0·75 (SD 1·12) in the azithromycin group compared with 1·62 (1·64) in the placebo group, and participants receiving azithromycin had significantly lower rate of exacerbations during the individual treatment periods (rate ratio 0·45 [95% CI 0·26-0·78]; p=0·004). Four serious adverse events were reported, occurring in one (2%) of 47 participants in the azithromycin group and in three (7%) of 41 participants in the placebo group. Loose stools or diarrhoea were more common in the azithromycin group than in the placebo group (11 [23%] vs two [5%]). INTERPRETATION This first multinational randomised controlled trial on pharmacotherapy in PCD showed that azithromycin maintenance therapy for 6 months was well tolerated and halved the rate of respiratory exacerbations. Azithromycin maintenance therapy is an option for patients with PCD with frequent exacerbations potentially leading to reduced need for additional antibiotic treatments and preventing irreversible lung damage. FUNDING European Commission Seventh Framework Programme and Children's Lung Foundation (Denmark)

    Discovery of estrogen receptor α target genes and response elements in breast tumor cells

    Get PDF
    BACKGROUND: Estrogens and their receptors are important in human development, physiology and disease. In this study, we utilized an integrated genome-wide molecular and computational approach to characterize the interaction between the activated estrogen receptor (ER) and the regulatory elements of candidate target genes. RESULTS: Of around 19,000 genes surveyed in this study, we observed 137 ER-regulated genes in T-47D cells, of which only 89 were direct target genes. Meta-analysis of heterogeneous in vitro and in vivo datasets showed that the expression profiles in T-47D and MCF-7 cells are remarkably similar and overlap with genes differentially expressed between ER-positive and ER-negative tumors. Computational analysis revealed a significant enrichment of putative estrogen response elements (EREs) in the cis-regulatory regions of direct target genes. Chromatin immunoprecipitation confirmed ligand-dependent ER binding at the computationally predicted EREs in our highest ranked ER direct target genes, NRIP1, GREB1 and ABCA3. Wider examination of the cis-regulatory regions flanking the transcriptional start sites showed species conservation in mouse-human comparisons in only 6% of predicted EREs. CONCLUSIONS: Only a small core set of human genes, validated across experimental systems and closely associated with ER status in breast tumors, appear to be sufficient to induce ER effects in breast cancer cells. That cis-regulatory regions of these core ER target genes are poorly conserved suggests that different evolutionary mechanisms are operative at transcriptional control elements than at coding regions. These results predict that certain biological effects of estrogen signaling will differ between mouse and human to a larger extent than previously thought

    Whole-Genome Cartography of Estrogen Receptor α Binding Sites

    Get PDF
    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor α (ERα) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERα binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5′ and 3′ ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERα binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERα-positive from ERα-negative breast tumors. The expression dynamics of the genes adjacent to ERα binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERα appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERα target genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERα binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERα binding and gene regulation

    Association between Perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: a cross-sectional study

    Get PDF
    BackgroundPerfluoroalkyl substances (PFASs) are a group of highly persistent chemicals that are widespread contaminants in wildlife and humans. Exposure to PFAS affects thyroid homeostasis in experimental animals and possibly in humans. The objective of this study was to examine the association between plasma concentrations of PFASs and thyroid stimulating hormone (TSH) among pregnant women.MethodsA total of 903 pregnant women who enrolled in the Norwegian Mother and Child Cohort Study from 2003 to 2004 were studied. Concentrations of thirteen PFASs and TSH were measured in plasma samples collected around the 18th week of gestation. Linear regression models were used to evaluate associations between PFASs and TSH.ResultsAmong the thirteen PFASs, seven were detected in more than 60% of samples and perfluorooctane sulfonate (PFOS) had the highest concentrations (median, 12.8ng/mL; inter-quartile range [IQR], 10.1 -16.5ng/mL). The median TSH concentration was 3.5 (IQR, 2.4 - 4.8) μIU/mL. Pregnant women with higher PFOS had higher TSH levels. After adjustment, with each 1ng/mL increase in PFOS concentration, there was a 0.8% (95% confidence interval: 0.1%, 1.6%) rise in TSH. The odds ratio of having an abnormally high TSH, however, was not increased, and other PFASs were unrelated to TSH.ConclusionsOur results suggest an association between PFOS and TSH in pregnant women that is small and may be of no clinical significance

    Carpal tunnel syndrome and the use of computer mouse and keyboard: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This review examines evidence for an association between computer work and carpal tunnel syndrome (CTS).</p> <p>Methods</p> <p>A systematic review of studies of computer work and CTS was performed. Supplementary, longitudinal studies of low force, repetitive work and CTS, and studies of possible pathophysiological mechanisms were evaluated.</p> <p>Results</p> <p>Eight epidemiological studies of the association between computer work and CTS were identified. All eight studies had one or more limitation including imprecise exposure and outcome assessment, low statistical power or potentially serious biases. In three of the studies an exposure-response association was observed but because of possible misclassification no firm conclusions could be drawn. Three of the studies found risks below 1. Also longitudinal studies of repetitive low-force non-computer work (n = 3) were reviewed but these studies did not add evidence to an association. Measurements of carpal tunnel pressure (CTP) under conditions typically observed among computer users showed pressure values below levels considered harmful. However, during actual mouse use one study showed an increase of CTP to potentially harmful levels. The long term effects of prolonged or repeatedly increased pressures at these levels are not known, however.</p> <p>Conclusion</p> <p>There is insufficient epidemiological evidence that computer work causes CTS.</p

    Protection from EAE in DOCK8 mutant mice occurs despite increased Th17 cell frequencies in the periphery.

    Get PDF
    peer reviewedMutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias

    Population vulnerability to COVID-19 in Europe: A burden of disease analysis

    Get PDF
    Background: Evidence has emerged showing that elderly people and those with pre-existing chronic health conditions may be at higher risk of developing severe health consequences from COVID-19. In Europe, this is of particular relevance with ageing populations living with non-communicable diseases, multi-morbidity and frailty. Published estimates of Years Lived with Disability (YLD) from the Global Burden of Disease (GBD) study help to characterise the extent of these effects. Our aim was to identify the countries across Europe that have populations at highest risk from COVID-19 by using estimates of population age structure and YLD for health conditions linked to severe illness from COVID-19. Methods: Population and YLD estimates from GBD 2017 were extracted for 45 countries in Europe. YLD was restricted to a list of specific health conditions associated with being at risk of developing severe consequences from COVID-19 based on guidance from the United Kingdom Government. This guidance also identified individuals aged 70 years and above as being at higher risk of developing severe health consequences. Study outcomes were defined as: (i) proportion of population aged 70 years and above; and (ii) rate of YLD for COVID-19 vulnerable health conditions across all ages. Bivariate groupings were established for each outcome and combined to establish overall population-level vulnerability. Results: Countries with the highest proportions of elderly residents were Italy, Greece, Germany, Portugal and Finland. When assessments of population-level YLD rates for COVID-19 vulnerable health conditions were made, the highest rates were observed for Bulgaria, Czechia, Croatia, Hungary and Bosnia and Herzegovina. A bivariate analysis indicated that the countries at high-risk across both measures of vulnerability were: Bulgaria; Portugal; Latvia; Lithuania; Greece; Germany; Estonia; and Sweden. Conclusion: Routine estimates of population structures and non-fatal burden of disease measures can be usefully combined to create composite indicators of vulnerability for rapid assessments, in this case to severe health consequences from COVID-19. Countries with available results for sub-national regions within their country, or national burden of disease studies that also use sub-national levels for burden quantifications, should consider using non-fatal burden of disease estimates to estimate geographical vulnerability to COVID-19
    corecore