7 research outputs found

    Molecular signatures define alopecia areata subtypes and transcriptional biomarkers

    Get PDF
    AbstractAlopecia areata (AA) is an autoimmune disease typified by nonscarring hair loss with a variable clinical course. In this study, we conducted whole genome gene expression analysis of 96 human scalp skin biopsy specimens from AA or normal control subjects. Based on gene expression profiling, samples formed distinct clusters based on the presence or absence of disease as well as disease phenotype (patchy disease compared with alopecia totalis or universalis). Differential gene expression analysis allowed us to robustly demonstrate graded immune activity in samples of increasing phenotypic severity and generate a quantitative gene expression scoring system that classified samples based on interferon and cytotoxic T lymphocyte immune signatures critical for disease pathogenesis

    Principal components ancestry adjustment for Genetic Analysis Workshop 17 data

    Get PDF
    Statistical tests on rare variant data may well have type I error rates that differ from their nominal levels. Here, we use the Genetic Analysis Workshop 17 data to estimate type I error rates and powers of three models for identifying rare variants associated with a phenotype: (1) by using the number of minor alleles, age, and smoking status as predictor variables; (2) by using the number of minor alleles, age, smoking status, and the identity of the population of the subject as predictor variables; and (3) by using the number of minor alleles, age, smoking status, and ancestry adjustment using 10 principal component scores. We studied both quantitative phenotype and a dichotomized phenotype. The model with principal component adjustment has type I error rates that are closer to the nominal level of significance of 0.05 for single-nucleotide polymorphisms (SNPs) in noncausal genes for the selected phenotype than the model directly adjusting for population. The principal component adjustment model type I error rates are also closer to the nominal level of 0.05 for noncausal SNPs located in causal genes for the phenotype. The power for causal SNPs with the principal component adjustment model is comparable to the power of the other methods. The power using the underlying quantitative phenotype is greater than the power using the dichotomized phenotype

    Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib

    No full text
    Background: Alopecia areata (AA) is an autoimmune disease resulting in hair loss with devastating psychosocial consequences. Despite its high prevalence, there are no FDA-approved treatments for AA. Prior studies have identified a prominent interferon signature in AA, which signals through JAK molecules. Methods: A patient with AA was enrolled in a clinical trial to examine the efficacy of baricitinib, a JAK1/2 inhibitor, to treat concomitant CANDLE syndrome. In vivo, preclinical studies were conducted using the C3H/HeJ AA mouse model to assess the mechanism of clinical improvement by baricitinib. Findings: The patient exhibited a striking improvement of his AA on baricitinib over several months. In vivo studies using the C3H/HeJ mouse model demonstrated a strong correlation between resolution of the interferon signature and clinical improvement during baricitinib treatment. Interpretation: Baricitinib may be an effective treatment for AA and warrants further investigation in clinical trials

    Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa

    No full text
    Revertant mosaicism is a naturally occurring phenomenon involving spontaneous correction of a pathogenic gene mutation in a somatic cell. It has been observed in several genetic diseases, including epidermolysis bullosa (EB), a group of inherited skin disorders characterized by blistering and scarring. Induced pluripotent stem cells (iPSCs), generated from fibroblasts or keratinocytes, have been proposed as a treatment for EB. However, this requires genome editing to correct the mutations, and, in gene therapy, efficiency of targeted gene correction and deleterious genomic modifications are still limitations of translation. We demonstrate the generation of iPSCs from revertant keratinocytes of a junctional EB patient with compound heterozygous COL17A1 mutations. These revertant iPSCs were then differentiated into naturally genetically corrected keratinocytes that expressed type XVII collagen (Col17). Gene expression profiling showed a strong correlation between gene expression in revertant iPSC-derived keratinocytes and the original revertant keratinocytes, indicating the successful differentiation of iPSCs into the keratinocyte lineage. Revertant-iPSC keratinocytes were then used to create in vitro three-dimensional skin equivalents and reconstitute human skin in vivo in mice, both of which expressed Col17 in the basal layer. Therefore, revertant keratinocytes may be a viable source of spontaneously gene-corrected cells for developing iPSC-based therapeutic approaches in EB
    corecore