14 research outputs found

    Expression of the Insulin-like Growth Factor system in first and second trimester human embryonic and fetal gonads

    Get PDF
    Financial Support: This work was supported by The Medical Research Council [MR/L010011/1 to PAF] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to PAF], BBSRC/EASTBIO (to AZ), ESHRE supported the ReproUnion fellowship (to AZ), Rigshospitalets Forskningspuljer (to LSM), and ReproUnion 1.0 (to LSM). Acknowledgement Marianne Sguazzino is acknowledged for excellent technical assistance. Gabriela Gudbergsen is acknowledged for her excellent design of Fig. 1. Data Availability: The dataset generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request. Microarray data are available with the Array Express accession number: E-MTAB-5611Peer reviewedPostprin

    Validating Reference Gene Expression Stability in Human Ovarian Follicles, Oocytes, Cumulus Cells, Ovarian Medulla, and Ovarian Cortex Tissue

    No full text
    Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis

    Hallmarks of Human Small Antral Follicle Development: Implications for Regulation of Ovarian Steroidogenesis and Selection of the Dominant Follicle

    Get PDF
    Regulation of human ovarian steroidogenesis differs from other species and precise knowledge on how human small antral follicles (hSAF) develop and acquire competence for continued growth and steroid output is still incomplete. The present study has characterized almost 1,000 normal hSAF collected in connection with cryopreservation of ovarian tissue for fertility preservation. The antral follicles (ranging from 3 to 13 mm) were generally aspirated from one ovary surgically removed during the natural cycle, and the follicular fluid (FF) and the granulosa cells (GC) were isolated and snap-frozen. In FF, the following hormones were measured: inhibin-B, inhibin-A, AMH, follistatin, PAPP-A, estradiol, progesterone, testosterone, and androstenedione. In GC, mRNA gene expressions using q-PCR were measured for the following genes: FSHR, AMH, CYP19, and AR. All samples in which one of the abovementioned parameters was measured were included, but typically multiple parameters were measured. Highly significant differences in concentration and follicular content in relation to follicular diameter were found for all measured hormones despite massive variability in-between follicles for any given diameter. The results demonstrate that profound changes take place in the hormonal microenvironment around follicular diameters of 8–11 mm corresponding to when follicular selection occurs. At this point, inhibin-B and inhibin-A showed distinct peaks concomitant with a significant reduction in both AMH protein and mRNA expression. Concentrations of inhibins, androgens, FSHR, and AR were intimately associated, and it is suggested that inhibin-B in combination with PAPP-A and thereby IGF2 activity exerts important paracrine signaling at follicular selection. At the same time upregulation of estradiol synthesis and CYP19 mRNA expression increased steroid output profoundly. Furthermore, the highly significant association between FSHR and AR mRNA gene expression enforces important functions of androgens in follicular development. Collectively, these data reintroduce the understanding of the follicular phase as two parted in which regulation of steroidogenesis differs. The profound changes taking place around follicular selection highlight important paracrine actions of TGF-β family members and IGFs for securing dominance of the selected follicle
    corecore