32 research outputs found

    The role of cardiac troponin T quantity and function in cardiac development and dilated cardiomyopathy

    Get PDF
    Background: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies results from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca2+ desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. Methods and Findings: We ablated Tnnt2 to produce heterozygous Tnnt2+/ mice, and crossbreeding produced homozygous null Tnnt2-/-embryos. We also generated transgenic mice overexpressing wildtype (TGWT) or DCM mutant (TGK210Δ) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2+/-/TGWT) or mutant (Tnnt2+/-/TGK210Δ) transgenes. Tnnt2+/-mice relative to wildtype had significantly reduced transcript (0.82 ± 0.06 [SD] vs. 1.00 ± 0.12 arbitrary units; p = 0.025), but not protein (1.01 ± 0.20 vs. 1.00 ± 0.13 arbitrary units; p = 0.44). Tnnt2+/-mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2+/-/ TGK210Δ mice had severe DCM, TGK210Δ mice had only mild DCM (FS 18 ± 4 vs. 29 ± 7%; p < 0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2+/-/TGK210Δ relative to TGK210Δ mice (2.42±0.08, p = 0.03). Tnnt2+/-/TGK210Δ muscle showed Ca2+ desensitization (pCa50 = 5.34 ± 0.08 vs. 5.58 ± 0.03 at sarcomere length 1.9 μm. p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2-/-embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. Conclusions: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca2+ desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity. © 2008 Ahmad et al

    Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation—tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure

    Full text link

    Establishing cyber warfare doctrine

    No full text
    Over the past several decades, advances in technology have transformed communications and the ability to acquire, disseminate, and utilize information in a range of environments. Modern societies and their respective militaries have taken advantage of a robust information space through network-centric systems. Because military and commercial operations have increasingly converged, communication and information infrastructures are now high-priority military objectives in times of war. This article examines the theoretical underpinning of current cyber warfare research, what we have learned so far about its application, and some of the emerging themes to be considered; it also postulates the development of a (national) cyber warfare doctrine (CWD). An endeavor of this scale requires lots of considerations and preparation for its development if it is to be cooperatively embraced. This article considers why information technology systems and their supporting infrastructures should be considered legitimate military targets in conflicts, and offers several events that support this supposition. In addition, it identifies the various forms of doctrine that will become the basis for developing a CWD, discusses a CWD's possible components, and proposes a national collaborative and discussion framework for obtaining a nation's stakeholder buy-in for such an endeavor.fals

    Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito)

    No full text
    The cardiac action potential (AP) is critical for initiating and coordinating myocyte contraction. In particular, the early repolarization period of the AP (phase 1) strongly influences the time course and magnitude of the whole-cell intracellular Ca2+ transient by modulating trans-sarcolemmal Ca2+ influx through L-type Ca2+ channels (ICa,L) and Na-Ca exchangers (ICa,NCX). The transient outward potassium current (Ito) has kinetic properties that make it especially effective in modulating the trajectory of phase 1 repolarization and thereby cardiac excitation-contraction coupling (ECC). The magnitude of Ito varies greatly during cardiac development, between different regions of the heart, and is invariably reduced as a result of heart disease, leading to corresponding variations in ECC. In this article, we review evidence supporting a modulatory role of Ito in ECC through its influence on ICa,L, and possibly ICa,NCX. We also discuss differential effects of Ito on ECC between different species, between different regions of the heart and in heart disease
    corecore