205 research outputs found
A van der Waals free energy in electrolytes revisited
A system of three electrolytes separated by two parallel planes is
considered. Each region is described by a dielectric constant and a Coulomb
fluid in the Debye-H\"uckel regime. In their book Dispersion Forces, Mahanty
and Ninham have given the van der Waals free energy of this system. We rederive
this free energy by a different method, using linear response theory and the
electrostatic Maxwell stress tensor for obtaining the dispersion force.Comment: 7 pages. PACS numbers updated. References update
Surface correlations for two-dimensional Coulomb fluids in a disc
After a brief review of previous work, two exactly solvable two-dimensional
models of a finite Coulomb fluid in a disc are studied. The charge correlation
function near the boundary circle is computed. When the disc radius is large
compared to the bulk correlation length, a correlation function of the surface
charge density can be defined. It is checked, on the solvable models, that this
correlation function does have the generic long-range behaviour, decaying as
the inverse square distance, predicted by macroscopic electrostatics. In the
case of a two-component plasma (Coulomb fluid made of two species of particles
of opposite charges), the density correlation function on the boundary circle
itself is conjectured to have a temperature-independent behaviour, decaying as
the -4 power of the distance.Comment: 15 pages, Latex, submitted to J.Phys.:Condens.Matte
Two-component plasma in a gravitational field: Thermodynamics
We revisit the model of the two-component plasma in a gravitational field,
which mimics charged colloidal suspensions. We concentrate on the computation
of the grand potential of the system. Also, a special sum rule for this model
is presented.Comment: 7 pages, LaTeX2
The Ideal Conductor Limit
This paper compares two methods of statistical mechanics used to study a
classical Coulomb system S near an ideal conductor C. The first method consists
in neglecting the thermal fluctuations in the conductor C and constrains the
electric potential to be constant on it. In the second method the conductor C
is considered as a conducting Coulomb system the charge correlation length of
which goes to zero. It has been noticed in the past, in particular cases, that
the two methods yield the same results for the particle densities and
correlations in S. It is shown that this is true in general for the quantities
which depend only on the degrees of freedom of S, but that some other
quantities, especially the electric potential correlations and the stress
tensor, are different in the two approaches. In spite of this the two methods
give the same electric forces exerted on S.Comment: 19 pages, plain TeX. Submited to J. Phys. A: Math. Ge
Another Derivation of a Sum Rule for the Two-Dimensional Two-Component Plasma
In a two-dimensional two-component plasma, the second moment of the number
density correlation function has the simple value , where is the dimensionless coupling
constant. This result is derived directly by using diagrammatic methods.Comment: 10 pages, uses axodraw.sty, elsart.sty, elsart12.sty, subeq.sty;
accepted for publication in Physica A, May 200
- …