159 research outputs found
Novel germline MSH2 mutation in lynch syndrome patient surviving multiple cancers
Lynch syndrome (LS) individuals are predisposed to a variety of cancers, most commonly colorectal, uterine, urinary tract, ovarian, small bowel, stomach and biliary tract cancers. The risk of extracolonic manifestations appears to be highest in MSH2 mutations carriers
Correction: a method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample
BACKGROUND: Presently available flow cytometric methods of bromodeoxyuridine (BrdUrd) labelling do not provide information on the cell cycle time (T(C)) and the growth fraction (GF). In this paper, we describe a novel and simple method to estimate T(C )and GF from flow cytometric analysis of a single tumour sample after BrdUrd labelling. METHODS: The proposed method is based on two assumptions: (1) the number of labelled cells traversing the cell cycle per unit time is constant and (2) the total number of labelled cells is constant throughout the cycle, provided that cells produced after division are excluded. The total numbers of labelled divided G(1 )cells, labelled divided S cells, labelled undivided S cells, and labelled undivided G(2 )cells were obtained for DNA histograms of BrdUrd-positive cells in a collected sample. These cell numbers were used to write equations to determine the durations of cell cycle phases, T(C )and GF. To illustrate the application of the proposed formulae, cell cycle kinetic parameters were analysed in solid SL2 tumours growing in DBA/2 mice and in human T-leukaemia Jurkat cells in culture. RESULTS: The suitability of the proposed method for estimating durations of the cell cycle phases, T(C )and GF was demonstrated. T(C )in SL2 tumours was found to be relatively constant at 4 and 10 days after tumour implantation (20.3 ± 1.1 h and 21.6 ± 0.9 h, respectively). GF in tumours at day 10 was lower than GF at day 4 (54.2 ± 7.7% vs. 79.2 ± 5.9%, p = 0.0003). Approximate values of T(C )and GF of cultured Jurkat cells were 23.9 h and 79.3%, respectively. CONCLUSION: The proposed method is relatively simple and permits estimation of the cell cycle parameters, including T(C )and GF, from a single tumour sample after labelling with BrdUrd. We have shown that this method may be useful in preclinical studies, allowing estimation of changes in GF during growth of murine tumours. Experiments with human Jurkat cells suggest that the proposed method might also prove suitable for measurement of cell kinetics in human tumours. Development of suitable software enabling more objective interpretation of the DNA profile in this method would be desirable
Is rare cancer care organized at national health system level? Multiple case study in six EU countries
Background: As a system of European Reference Networks (ERNs) emerges, we aimed to shed light on the processes through which reference centres (RCs) for rare cancers are embedded in national health systems, and to formulate hypotheses about which national care models favour equitable access for patients. Methods We used a multiple-case-study design based on the experiences of Czechia, Finland, France, Italy, Lithuania and Spain. Using sarcoma as an example of rare cancer, 52 semi-structured interviews were conducted during six on-site visits. Results The comparative analysis showed substantial heterogeneity in the processes for formalising RCs status and in their levels of integration in the different health systems, but two models, namely, the centre-based and the network-based, can be envisaged at national level. RCs for rare cancers were legally established only in France and Spain. Expert clinicians cooperate in a structured way, using network mechanisms, in France and Italy, and these countries, plus Finland and Lithuania, had a referral system to facilitate patients' access from non-expert centres to RCs. Comparative analysis of the cases enabled the identification of key healthcare planning principles in instituting RCs at the national level, among them the need to stipulate the involvement of expert professionals in steering the rare cancer care system
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
Peer reviewedPublisher PD
Identification of six new susceptibility loci for invasive epithelial ovarian cancer
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.
BACKGROUND: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D. METHODS: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided. RESULTS: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC. CONCLUSIONS: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models
The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases
Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2–4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases
- …