1,691 research outputs found

    Minimizing Flow-Time on Unrelated Machines

    Get PDF
    We consider some flow-time minimization problems in the unrelated machines setting. In this setting, there is a set of mm machines and a set of nn jobs, and each job jj has a machine dependent processing time of pijp_{ij} on machine ii. The flow-time of a job is the total time the job spends in the system (completion time minus its arrival time), and is one of the most natural quality of service measure. We show the following two results: an O(min⁑(log⁑2n,log⁑nlog⁑P))O(\min(\log^2 n,\log n \log P)) approximation algorithm for minimizing the total-flow time, and an O(log⁑n)O(\log n) approximation for minimizing the maximum flow-time. Here PP is the ratio of maximum to minimum job size. These are the first known poly-logarithmic guarantees for both the problems.Comment: The new version fixes some typos in the previous version. The paper is accepted for publication in STOC 201

    Constant-Competitive Prior-Free Auction with Ordered Bidders

    Full text link
    A central problem in Microeconomics is to design auctions with good revenue properties. In this setting, the bidders' valuations for the items are private knowledge, but they are drawn from publicly known prior distributions. The goal is to find a truthful auction (no bidder can gain in utility by misreporting her valuation) that maximizes the expected revenue. Naturally, the optimal-auction is sensitive to the prior distributions. An intriguing question is to design a truthful auction that is oblivious to these priors, and yet manages to get a constant factor of the optimal revenue. Such auctions are called prior-free. Goldberg et al. presented a constant-approximate prior-free auction when there are identical copies of an item available in unlimited supply, bidders are unit-demand, and their valuations are drawn from i.i.d. distributions. The recent work of Leonardi et al. [STOC 2012] generalized this problem to non i.i.d. bidders, assuming that the auctioneer knows the ordering of their reserve prices. Leonardi et al. proposed a prior-free auction that achieves a O(logβ‘βˆ—n)O(\log^* n) approximation. We improve upon this result, by giving the first prior-free auction with constant approximation guarantee.Comment: The same result has been obtained independently by E. Koutsoupias, S. Leonardi and T. Roughgarde
    • …
    corecore