108 research outputs found

    Microwave Acid Leaching of Beneficiated Ilmenite for the Production of Synthetic Rutile

    Get PDF
    Beneficiated ilmenite is an intermediate product formed by the aqueous rusting of metallised ilmenite and separation of iron oxide. This product enriched with TiO2 by the removal of metallic iron can further be upgraded by subs-equent removal of residual iron by acid leaching for the production of synthetic rutile which is a preferred tita-nium feedstock for the preparation of TiO2 pigment

    Cross-over behaviour in a communication network

    Full text link
    We address the problem of message transfer in a communication network. The network consists of nodes and links, with the nodes lying on a two dimensional lattice. Each node has connections with its nearest neighbours, whereas some special nodes, which are designated as hubs, have connections to all the sites within a certain area of influence. The degree distribution for this network is bimodal in nature and has finite variance. The distribution of travel times between two sites situated at a fixed distance on this lattice shows fat fractal behaviour as a function of hub-density. If extra assortative connections are now introduced between the hubs so that each hub is connected to two or three other hubs, the distribution crosses over to power-law behaviour. Cross-over behaviour is also seen if end-to-end short cuts are introduced between hubs whose areas of influence overlap, but this is much milder in nature. In yet another information transmission process, namely, the spread of infection on the network with assortative connections, we again observed cross-over behaviour of another type, viz. from one power-law to another for the threshold values of disease transmission probability. Our results are relevant for the understanding of the role of network topology in information spread processes.Comment: 12 figure

    Predictors of Limb Fat Gain in HIV Positive Patients Following a Change to Tenofovir-Emtricitabine or Abacavir-Lamivudine

    Get PDF
    Background Antiretroviral treatment (cART) in HIV causes lipoatrophy. We examined predictors of anthropometric outcomes over 96 weeks in HIV-infected, lipoatrophic adults receiving stable cART randomised to tenofovir-emtricitabine (TDF-FTC) or abacavir-lamivudine (ABC-3TC) fixed dose combinations. Methodology/Principal Findings The STEAL study was a prospective trial of virologically suppressed participants randomised to either TDF-FTC (n = 178) or ABC-3TC (n = 179). Anthropometric assessment was conducted at baseline, weeks 48 and 96. The analysis population included those with baseline and week 96 data remaining on randomised therapy. Distribution of limb fat change was divided into four categories (≤0%, \u3e0-10%, \u3e10-20%, \u3e20%). Baseline characteristics [demographics, medical history, metabolic and cardiovascular biomarkers] were assessed as potential predictors of change in percent subcutaneous limb fat using linear regression. 303 participants (85% of STEAL population) were included. Baseline characteristics were: mean (±SD) age 45 (±8) years; thymidine analogue nucleoside reverse transcriptase inhibitor (tNRTI) duration 4 (±3) years; limb fat 5.4 (±3.0)kg; body mass index 24.7 (±3.5) kg/m2. Mean (SD) limb fat gain to week 48 and 96 was 7.6% (±22.4) and 13.2% (±27.3), respectively, with no significant difference between groups. 51.5% of all participants had \u3e10% gain in limb fat. Predictors of greater limb fat gain at week 96 were baseline tNRTI (10.3, p = 0.001), glucose \u3e6 mmol/L (16.1, p = 0.04), higher interleukin 6 (IL-6) (2.8, p = 0.004) and lower baseline limb fat (3.8-6.4 kg - 11.2; \u3e6.4 kg - 15.7, p trend\u3c0.001). Conclusions/Significance Modest peripheral fat gain occurred with both TDF-FTC and ABC-3TC. Baseline factors associated with more severe lipodystrophy (lipoatrophy, baseline tNRTI, raised IL6, and glucose) predicted greater limb fat recovery at 96 weeks

    Trends in all cause and viral liver disease-related hospitalizations in people with hepatitis B or C: a population-based linkage study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have reported an excess burden of cancer and mortality in populations with chronic hepatitis B (HBV) or C (HCV), but there are limited data comparing hospitalization rates. In this study, we compared hospitalization rates for all causes and viral liver disease in people notified with HBV or HCV in New South Wales (NSW), Australia.</p> <p>Methods</p> <p>HBV and HCV notifications were linked to their hospital (July 2000-June 2006), HIV and death records. Standardized hospitalization ratios (SHRs) were calculated using rates for the NSW population. Random effects Poisson regression was used to examine temporal trends.</p> <p>Results</p> <p>The SHR for all causes and non alcoholic liver disease was two-fold higher in the HCV cohort compared with the HBV cohort (SHRs 1.4 (95%CI: 1.4-1.4) v 0.6 (95%CI: 0.6-0.6) and 14.0 (95%CI: 12.7-15.4) v 5.4 (95%CI: 4.5-6.4), respectively), whilst the opposite was seen for primary liver cancer (SHRs 16.2 (95%CI: 13.8-19.1) v 29.1 (95%CI: 24.7-34.2)). HIV co-infection doubled the SHR except for primary liver cancer in the HCV/HIV cohort. In HBV and HCV mono-infected cohorts, all cause hospitalization rates declined and primary liver cancer rates increased, whilst rates for non alcoholic liver disease increased by 9% in the HCV cohort but decreased by 14% in the HBV cohort (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>Hospital-related morbidity overall and for non alcoholic liver disease was considerably higher for HCV than HBV. Improved treatment of advanced HBV-related liver disease may explain why HBV liver-related morbidity declined. In contrast, HCV liver-related morbidity increased and improved treatments, especially for advanced liver disease, and higher levels of treatment uptake are required to reverse this trend.</p

    End-stage kidney disease due to haemolytic uraemic syndrome - outcomes in 241 consecutive ANZDATA Registry cases

    Get PDF
    Extent: 11p.Background: The aim of this study was to investigate the characteristics and outcomes of patients receiving renal replacement therapy for end-stage kidney disease (ESKD) secondary to haemolytic uraemic syndrome (HUS). Methods: The study included all patients with ESKD who commenced renal replacement therapy in Australia and New Zealand between 15/5/1963 and 31/12/2010, using data from the ANZDATA Registry. HUS ESKD patients were compared with matched controls with an alternative primary renal disease using propensity scores based on age, gender and treatment era. Results: Of the 58422 patients included in the study, 241 (0.4%) had ESKD secondary to HUS. HUS ESKD was independently associated with younger age, female gender and European race. Compared with matched controls, HUS ESKD was not associated with mortality on renal replacement therapy (adjusted hazard ratio [HR] 1.14, 95% CI 0.87-1.50, p = 0.34) or dialysis (HR 1.34, 95% CI 0.93-1.93, p = 0.12), but did independently predict recovery of renal function (HR 54.01, 95% CI 1.45-11.1, p = 0.008). 130 (54%) HUS patients received 166 renal allografts. Overall renal allograft survival rates were significantly lower for patients with HUS ESKD at 1 year (73% vs 91%), 5 years (62% vs 85%) and 10 years (49% vs 73%). HUS ESKD was an independent predictor of renal allograft failure (HR 2.59, 95% CI 1.70-3.95, p < 0.001). Sixteen (12%) HUS patients experienced failure of 22 renal allografts due to recurrent HUS. HUS ESKD was not independently associated with the risk of death following renal transplantation (HR 0.92, 95% CI 0.35-2.44, p = 0.87). Conclusions: HUS is an uncommon cause of ESKD, which is associated with comparable patient survival on dialysis, an increased probability of renal function recovery, comparable patient survival post-renal transplant and a heightened risk of renal transplant graft failure compared with matched ESKD controls.Wen Tang, Janaki Mohandas, Stephen P McDonald, Carmel M Hawley, Sunil V Badve, Neil Boudville, Fiona G Brown, Philip A Clayton, Kathryn J Wiggins, Kym M Bannister, Scott B Campbell and David W Johnso

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • …
    corecore