6 research outputs found

    Methods for Searching of Potential Beneficial Bacteria and Their Products in Dental Biofilm

    Get PDF
    Dental microbiota is associated with different types of organisms with dentition including humans and is responsible for many oral diseases all over the world. Bacteria in a dental biofilm are important also in other diseases, i.e., endocarditis, pulmonary fibrosis, and arthritis, and some findings predict the connection of dental microbiota with cancerogenesis. Not all oral bacterial representatives are pathogenic or potentially pathogenic. Dental biofilm consists of numerous different bacteria that may have beneficial characteristics for good condition of dental and oral health. Searching for bacteria or their products with the beneficial effect is important in the development of new biologically based strategies for the prevention or treatment of oral and dental diseases. For searching of potential probiotic candidates are useful methods that could map phenotypic or genotypic characteristics of studied bacteria. This chapter is focused on the spectrum of these basic methods searching for beneficial bacteria and their products

    Dental Biofilm as Etiological Agent of Canine Periodontal Disease

    Get PDF
    Periodontal disease is one of the most common health problem affecting dogs. The disease is more prevalent in small breeds and brachycephalic breeds compared to large breeds, and incidence increases with advancing age. In first stage it affects only the gingival tissue and causes gingivitis. It later develops into periodontitis which involves changes in other periodontium tissues. Main etiological agents of periodontal disease are pathogenic bacteria of dental biofilm, and products of their metabolism. In human, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia play a key role in the etiology of periodontal disease. Also, there are many other candidates as human periodontal pathogens, including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, Parvimonas micra, Eikenella corrodens, Capnocytophaga gingivalis, Eubacterium nodatum and Campylobacter rectus. Since periodontal diseases in dogs are similar to human diseases in terms of disease progression and clinical manifestation, we can assume their common etiology. This chapter is focused on review about canine dental biofilm and about members of biofilm as potential causative agent of canine periodontal disease

    Detection of Periodontal Pathogens from Dental Plaques of Dogs with and without Periodontal Disease

    No full text
    Dental plaque bacteria are one of the main factors responsible for the development of a periodontal disease, which is the most common infectious disease in dogs. The aim of this study was to identify the presence of periodontal disease-related bacteria in the dental plaque of dogs. Plaque samples were taken from dogs with and without periodontal disease. Samples were analyzed for the presence of Porphyromonas gulae, Tannerella forsythia and Treponema denticola using a PCR technique amplifying 16S rRNA genes of P. gulae and T. forsythia and flaB2 genes of Treponema species, including T. denticola. The presence of T. forsythia was confirmed in all samples. P. gulae was detected in all dogs with periodontal disease and in 71.43% of dogs without periodontal disease. Treponema spp. were detected in 64.29% of the samples. Based on Sanger sequencing and Basic Local Alignment Search Tool algorithm, Treponema spp. were identified as T. denticola and Treponema putidum. T. denticola was present in 28.57% of dogs with periodontal disease, while T. putidum was present in 42.86% of dogs with periodontal disease and in 57.14% of dogs without periodontal disease. T. putidum was positively correlated with both P. gulae and T. forsythia, suggesting that it may be involved in the development of periodontal disease

    Inhibitory Effect of Bacillus licheniformis Strains Isolated from Canine Oral Cavity

    No full text
    Bacillus licheniformis is used in a broad spectrum of areas, including some probiotic preparations for human and veterinary health. Moreover, B. licheniformis strains are known producers of various bioactive substances with antimicrobial and antibiofilm effects. In searching for new potentially beneficial bacteria for oral health, the inhibitory effect of B. licheniformis strains isolated from canine dental biofilm against pathogenic oral bacteria was evaluated. The antimicrobial effect of neutralized cell-free supernatants (nCFS) was assessed in vitro on polystyrene microtiter plates. Furthermore, molecular and morphological analyses were executed to evaluate the production of bioactive substances. To determine the nature of antimicrobial substance present in nCFS of B. licheniformis A-1-5B-AP, nCFS was exposed to the activity of various enzymes. The nCFS of B. licheniformis A-1-5B-AP significantly (p < 0.0001) reduced the growth of Porphyromonas gulae 3/H, Prevotella intermedia 1/P and Streptococcus mutans ATCC 35668. On the other hand, B. licheniformis A-2-11B-AP only significantly (p < 0.0001) inhibited the growth of P. intermedia 1/P and S. mutans ATCC 35668. However, enzyme-treated nCFS of B. licheniformis A-1-5B-AP did not lose its antimicrobial effect and significantly (p < 0.0001) inhibited the growth of Micrococcus luteus DSM 1790. Further studies are needed for the identification of antimicrobial substances

    The Presence of <i>Treponema</i> spp. in Equine Hoof Canker Biopsies and Skin Samples from Bovine Digital Dermatitis Lesions

    No full text
    Equine hoof canker and bovine digital dermatitis are infectious inflammatory diseases of the hooves with an unknown etiology. However, anaerobic spirochetes of the genus Treponema are considered to be potential etiological agents. The aim of this study was to find a suitable way to isolate DNA and to detect the presence of treponemal DNA in samples of equine hoof canker and bovine digital dermatitis. DNAzol®® Direct and column kits were used to isolate DNA from samples of equine hoof canker and bovine digital dermatitis. The presence of Treponema spp. was detected using PCR and Sanger sequencing. DNAzol®® Direct is suitable for isolating DNA from these types of samples. Treponemal DNA was detected in equine hoof samples as well as in bovine digital dermatitis skin samples. In equine hoof biopsies, the most frequently detected was Treponema pedis (8/13). Treponema brennaborense (2/13) and Treponema denticola (2/13) were also found. In the case of bovine digital dermatitis, Treponema medium ssp. bovis was confirmed in 14 of 36 skin samples. Treponema pedis (9/36), Treponema vincentii (1/36), Treponema phagedenis (1/36), and Treponema brennaborense (1/36) were detected as well. DNAzol®® Direct was more appropriate for isolation of treponemal DNA because the columns isolation method was more equipment and time-consuming. The presence of several Treponema spp. was determined in the samples. In horses, the most commonly detected species was a T. pedis, while in cattle it was T. medium ssp. bovis

    The Presence of Treponema spp. in Equine Hoof Canker Biopsies and Skin Samples from Bovine Digital Dermatitis Lesions

    No full text
    Equine hoof canker and bovine digital dermatitis are infectious inflammatory diseases of the hooves with an unknown etiology. However, anaerobic spirochetes of the genus Treponema are considered to be potential etiological agents. The aim of this study was to find a suitable way to isolate DNA and to detect the presence of treponemal DNA in samples of equine hoof canker and bovine digital dermatitis. DNAzol®® Direct and column kits were used to isolate DNA from samples of equine hoof canker and bovine digital dermatitis. The presence of Treponema spp. was detected using PCR and Sanger sequencing. DNAzol®® Direct is suitable for isolating DNA from these types of samples. Treponemal DNA was detected in equine hoof samples as well as in bovine digital dermatitis skin samples. In equine hoof biopsies, the most frequently detected was Treponema pedis (8/13). Treponema brennaborense (2/13) and Treponema denticola (2/13) were also found. In the case of bovine digital dermatitis, Treponema medium ssp. bovis was confirmed in 14 of 36 skin samples. Treponema pedis (9/36), Treponema vincentii (1/36), Treponema phagedenis (1/36), and Treponema brennaborense (1/36) were detected as well. DNAzol®® Direct was more appropriate for isolation of treponemal DNA because the columns isolation method was more equipment and time-consuming. The presence of several Treponema spp. was determined in the samples. In horses, the most commonly detected species was a T. pedis, while in cattle it was T. medium ssp. bovis
    corecore