32 research outputs found

    Arachnids secrete a fluid over their adhesive pads.

    Get PDF
    BACKGROUND: Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48-1.50; contact angle: 3.7-11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. SIGNIFICANCE: This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals

    Fracture toughness of locust cuticle

    No full text
    Insect cuticle is one of the most common biological materials, yet very little is known about its mechanical properties. Many parts of the insect exoskeleton, such as the jumping legs of locusts, have to withstand high and repeated loading without failure. This paper presents the first measurements of fracture toughness for insect cuticle using a standard engineering approach. Our results show that the fracture toughness of cuticle in locust hind legs is 4.12 MPa m(1/2) and decreases with desiccation of the cuticle. Stiffness and strength of the tibia cuticle were measured using buckling and cantilever bending and increased with desiccation. A combination of the cuticle's high toughness with a relatively low stiffness of 3.05 GPa results in a work of fracture of 5.56 kJ m(-2), which is amongst the highest of any biological material, giving the insect leg an exceptional ability to tolerate defects such as cracks and damage. Interestingly, insect cuticle achieves these unique properties without using reinforcement by a mineral phase, which is often found in other biological composite materials. These findings thus might inspire the development of new biomimetic composite materials.15021508215

    Semi-automated differentiation of insect exo- and endocuticle in X-ray microtomography

    No full text
    One of the most versatile and complex biological composite materials, the insect exoskeleton shows a huge range in biomechanical properties. The cuticle exoskeleton can be differentiated into two main histologically different layers with distinct properties: the outer, more sclerotized exocuticle and inner, softer endocuticle. For most biomechanical research questions, it is of great importance to be able to selectively characterize geometrical features of these layers. However, most conventional preparation methods (cross-sections, histological staining, SEM) require complex and destructive sample preparation, which provides only two-dimensional information. Here, we present a novel, simple staining method using X-ray microtomography to distinguish between exo- and endocuticle in a 3D environment without sample destruction. We illustrate the power of our method using locust (Locusta migratoria) hindleg tibia, a well characterized biomechanical sample. Our method allows an easy and direct measurement of exo- and endocuticle and their respective geometric features. Applying our method will help to understand the biomechanical role of exo- and endocuticle within an insect exoskeleton and will allow us to understand its composition and morphological features in more detail.6

    Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future

    No full text
    The exoskeleton of an insect can contain countless specializations across an individual, across developmental stages, and across the class Insecta. Hence, the exoskeleton's building material cuticle must perform a vast variety of functions. Cuticle displays a wide range of material properties which are determined by several known factors: the amount and orientation of the chitin fibres, the constituents and degree of cross-linking and hydration of the protein matrix, the relative amounts of exo- and endocuticle, and the shape of the structures themselves. In comparison to other natural materials such as wood and mammal bone, relatively few investigations into the mechanical properties of insect cuticle have been carried out. Of these, very few have focussed on the need for repair and its effectiveness at restoring mechanical stability to the cuticle. Insect body parts are often subject to prolonged repeated cyclic loads when running and flying, as well as more extreme "emergency" behaviours necessary for survival such as jumping, wedging (squeezing through small holes) and righting (when overturned). What effects have these actions on the cuticle itself? How close to the limits of failure does an insect push its body parts? Can an insect recover from minor or major damage to its exoskeleton "bones"? No current research has answered these questions conclusively.495546

    Bio-inspired, nanostructured anti-reflective surfaces for laser applications

    No full text
    Here we show the use of nanostructured fused silica substrates with well-controlled geometry and refractive index profiles to provide ultra-low reflectance (0.015%) and nearly perfect transmittance (99.9%) per side over a broad range of wavelengths. Anti-reflective surfaces using such nanostructures will allow the design of more durable and powerful laser systems.ATh3

    Effect of sample treatment on biomechanical properties of insect cuticle

    No full text
    Experimental limitations often prevent to perform biomechanical measurements on fresh arthropod cuticle samples. Hence, in many cases short- or long-term storage of samples is required. So far, it is not known whether any of the standard lab-techniques commonly used to fix or store insect cuticle samples in any way affects the biomechanical properties of the respective samples. In this paper we systematically address this question for the first time, with a focus on practical, easily accessible and common lab-methods including storage in water, ethanol, glutaraldehyde, freezing and desiccation. We performed a comprehensive and sensitive non-destructive Dynamic Mechanical Analysis (DMA) on locust hind leg tibiae using a three-point-bending setup. Our results show that from all tested treatments, freezing samples at -20 °C was the best option to maintain the original values for Young's modulus and damping properties of insect cuticle. In addition, our results indicate that the damping properties of locust hind legs might be mechanically optimized in respect to the jumping and kicking direction.13814646

    SAUV-A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle

    No full text
    Autonomous and remotely operated underwater vehicles allow us to reach places which have previously been inaccessible and perform complex repair, exploration and analysis tasks. As their navigation is not infallible, they may cause severe damage to themselves and their often fragile surroundings, such as flooded caves, coral reefs, or even accompanying divers in case of a collision. In this study, we used a shallow neural network, consisting of interlinking PID controllers, and trained by a genetic algorithm, to control a biologically inspired AUV with a soft and compliant exoskeleton. Such a compliant structure is a versatile and passive solution which reduces the accelerations induced by collisions to 56% of the original mean value acting upon the system, thus, notably reducing the stress on its components and resulting reaction forces on its surroundings. The segmented structure of this spherical exoskeleton protects the encased system without limiting the use of cameras, sensors or manipulators.1131

    Insect wing damage: causes, consequences and compensatory mechanisms

    No full text
    The evolution of wings has played a key role in the success of insect species, allowing them to diversify to fill many niches. Insect wings are complex multifunctional structures, which not only have to withstand aerodynamic forces but also need to resist excessive stresses caused by accidental collisions. This Commentary provides a summary of the literature on damage-reducing morphological adaptations in wings, covering natural causes of wing collisions, their impact on the structural integrity of wings and associated consequences for both insect flight performance and life expectancy. Data from the literature and our own observations suggest that insects have evolved strategies that (i) reduce the likelihood of wing damage and (ii) allow them to cope with damage when it occurs: damage-related fractures are minimized because wings evolved to be damage tolerant and, in the case of wing damage, insects compensate for the reduced aerodynamic efficiency with dedicated changes in flight kinematics.18223

    3D escape: an alternative paradigm for spatial orientation studies in insects

    No full text
    Arthropods and in particular insects show a great variety of different exoskeletal sensors. For most arthropods, spatial orientation and gravity perception is not fully understood. In particular, the interaction of the different sensors is still a subject of ongoing research. A disadvantage of most of the experimental methods used to date to study the spatial orientation of arthropods in behavioral experiments is that the body or individual body parts are fixed partly in a non-natural manner. Therefore, often only the movement of individual body segments can be used to evaluate the experiments. We here present a novel experimental method to easily study 3D-escape movements in insects and analyze whole-body reaction. The animals are placed in a transparent container, filled with a lightweight substrate and rotating around two axes. To verify our setup, house crickets (Acheta domesticus) with selectively manipulated gravity-perceiving structures were analyzed. The spatial orientation behavior was quantified by measuring the time individuals took to escape toward the surface and the angular deviation toward the gravitational vector. These experiments confirm earlier results and therefore validated our experimental setup. Our new approach thus allows to investigate several comprehensive questions regarding the spatial orientation of insects and other animals

    Size and distribution of wing cells in <i>S. gregaria</i> hind wings.

    No full text
    <p>(a) Typical structure of a hind wing, showing the distribution of the wing cells’ major axis length. Cells with smaller major axis lengths are mostly arranged around the perimeter of the wing (CCL: critical crack length). (b) Mean frequency of wing cell sizes from six hind wings. The distribution of cells corresponds very well to a normal distribution around a mean major axis length of 1.103 mm (σ = 544.16, a = 7.33, R = 0.98). The cumulative membrane area formed by cells smaller than the critical crack length is 19.44% of the overall membrane area (mean ± SD, N = 5553 cells from 6 wings). The colour map of the bars corresponds to subfigure A. (c) 2D-Histogram showing the relative frequency of cell size and their distance to the wing edge. There is a significant positive correlation of the major axis length with the distance to the wing edge (ρ = 0.393, R<sup>2</sup> = 0.154, p<0.001, linear correlation, N = 5553 cells).</p
    corecore