64 research outputs found

    Conversion and shrinkage analysis of acrylated hyperbranched polymer nanocomposites

    Get PDF
    The photo-curing behavior of composites containing nanosized SiO2 in an acrylated hyperbranched polymer matrix was investigated by means of photo differential scanning calorimetry. The chemical conversion data were analyzed using an autocatalytic model, paying close attention to the influence of composition and UV intensity. It was shown that the reaction order and the autocatalytic exponent were independent of UV intensity and filler fraction, whereas the rate constant showed strong intensity dependence, but weak filler dependence. Maximum conversion was independent of UV intensity, but was reduced when a filler was present. The dispersion state influenced the gel-point of the composites, but had no influence on the overall cure kinetics. Cure shrinkage reduction of ~33% could be achieved by adding 20 vol% of filler. This was attributed to the reduced double bond conversion of the matrix due to the presence of the filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 1954–1963, 200

    Influence of process pressure on local facesheet instability for ultralight sandwich structures

    Get PDF
    The skin wrinkling phenomenon was investigated in the case of ultra-light sandwich structures with a honeycomb core manufactured by one-shot vacuum bag processing. The interplay between process pressure and compressive strength of the skin was established. It was observed that the size of the adhesive menisci between honeycomb cell walls and skin, and the waviness of the skin increased with process pressure. As these two effects exerted opposing influences on the compressive strength of the skin, an optimal process pressure equal to 0.7 bar was identified experimentally and confirmed by an analytical model

    Time-Intensity Superposition for Photoinitiated Polymerization of Fluorinated and Hyperbranched Acrylate Nanocomposites

    Get PDF
    The validity of the time-intensity superposition principle for the photoinitiated polymerization of nanocomposites based on a monofunctional fluorinated acrylate and on a multifunctional hyperbranched polyether acrylate was investigated in this work. Master curves were obtained for the conversion as a function of time, measured by photo differential scanning calorimetry, by shifting on the time axis the curves obtained at different intensities. A power-law dependence of the shift factor on the intensity was found for all materials, with exponents equal to 0.45 ± 0.03 for the fluorinated acrylates and to 0.71 ± 0.05 for the hyperbranched polyether acrylates. Consequently it is inferred that the radiant exposure reciprocity law, implying linear dependence of the shift factor on intensity, does not apply to the studied compositions. The kinetics of the photopolymerization of materials based on the fluorinated acrylate was analyzed with the autocatalytic model. The final conversion was independent on intensity and filler content. The rate constants showed for all materials a power-law dependency on intensity, with exponents similar to those of the corresponding shift factors

    Models for Saturation Damage State and Interfacial Shear Strengths in Multilayer Coatings

    Get PDF
    The present work investigates the saturation damage state of a two-layer coating on a substrate (layer 1/layer 2/substrate) under uniaxial tensile loading in order to derive expressions for the interfacial strength between layer 1 and layer 2, and between layer 2 and substrate. It is based on experimental data on specimens where layer 1 is an inorganic film, layer 2 is an organic coating and the substrate is a polymer. The analysis is relevant to the cases where layer 1 cracks first, followed by layer 2, in which cracks appear due to stress concentrations caused by the cracks in layer 1. It considers the cases where at least one interface is completely yielded with shear stress equal to the interfacial shear stress, and where the crack density in layer 1 is equal to or higher than the crack density in layer 2. The possible situations depend on the relative shear strengths between layers 1 and 2 and between layer 2 and the substrate. The interfacial shear strength between layer 1 and layer 2, and between layer 2 and substrate are derived for elastic and yielded stress transfer cases and found to frame experimental values obtained with single-layer coatings

    Superhard transparent hybrid nanocomposites for high fidelity UV-nanoimprint lithography

    Get PDF
    Transparent hyperbranched acrylate nanocomposites were produced using different combinations of silica nanoparticles and silicon-based sol-gel precursors. The nanocomposites were processed using a dual-cure UV polymerization and condensation scheme. The viscosity of hybrid suspensions was found to be one to two orders of magnitude lower than that of particulate composites with the same equivalent silica fraction. The Vickers microhardness of the polymer was 112 MPa. It was equal to 190 MPa and 148 MPa for the hybrid composites and particulate composites with 20 vol% SiO2, respectively, and it was equal to 287 MPa for the hybrid material with 30 vol% SiO2. Light-trapping textures in the form of random sub-micron pyramidal features were replicated in the hybrid composites from a nickel template using UV-nanoimprint lithography. After optimization of the dual-cure process sequence, a very high replication fidelity was obtained for all investigated compositions, leading to a haze above 99% over the visible light spectrum and a very effective light scattering performance in a broad angular exposure. (C) 2013 Elsevier Ltd. All rights reserved

    Electrofragmentation modeling of conductive coatings on polymer substrates

    Get PDF
    Damage occurring under tensile loading and the resulting increase of electrical resistance of indium-doped tin oxide and amorphous graphite coatings on various polymer substrates are investigated, using an electro-fragmentation method in situ in an optical microscope. The electrical resistance is modeled as a function of damage state assuming that the resistance of coating cracks is proportional to their opening, and that there exists a conducting path of constant thickness at the coating/substrate interface across the crack. The model reproduces the experimental data with good accuracy apart from the damage initiation and saturation stages where it underestimates the measured coating resistance. This is due to the presence of stable cracks of finite length in the initiation stage and delamination in the saturation stage. Impedance spectroscopy measurements confirm the purely resistive nature of the conducting path, whose resistivity is found to be 3 to 4 orders of magnitude higher than that of the un- cracked coating

    Nanoindentation of Functionally Graded Polymer Nanocomposites: Assessment of the Strengthening Parameters through Experiments and Modeling

    Get PDF
    Nanoindentation tests were carried out on the surface of polymer nanocomposites exhibiting either graded or homogeneous distributions of Fe3O4@silica core-shell nanoparticles in a photocurable polymeric matrix. The results reveal a complex interplay between graded morphology, indentation depth, and calculated modulus and hardness values, which was elucidated through numerical simulations. First, it was experimentally shown how for small (1 ÎŒm) indentations, large increases in modulus (up to +40%) and hardness (up to +93%) were obtained for graded composites with respect to their homogeneous counterparts, whereas at a larger indentation depth (20 ÎŒm), the modulus and hardness of the graded and homogeneous composites did not substantially differ from each other and from those of the pure polymer. Then, through a material point method approach, experimental nanoindentation tests were successfully simulated, confirming the importance of the indentation depth and of the associated plastic zone as key factors for a more accurate design of graded polymer nanocomposites whose mechanical properties are able to fulfill the requirements encountered during operational life

    The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF-TrFE)/BaTiO3 composites

    Get PDF
    In this study (0-3) P(VDF-TrFE)/BaTiO3 composites containing up to 60 vol% of ceramic phase were prepared by solvent casting or compression molding. Their thermomechanical, dielectric, and piezoelectric properties were investigated, and discussed in the light of the properties of the basic components, the processing route and the resulting morphology. The crystalline structure of the P(VDF-TrFE) matrix was found to be highly dependent on the processing route, while the structure of BaTiO3 was not affected by any of the processing steps. The mechanical properties of the solvent cast materials showed a maximum at 30 vol% BaTiO3, while they increased monotonically with BaTiO3 content for compression molded materials. This difference was attributed to a higher amount of porosity and inhomogeneities in the solvent cast composites. Permittivity as high as 120 and piezoelectric coefficient d(33) up to 32 pC/N were obtained for compression molded composites, and the observed decrease in d(33) with aging time was attributed to the effect of mechanical stress release in the polymer matrix

    Effect of interfacial interactions on the electromechanical response of poly(vinylidene fluoride-trifluoroethylene)/BaTiO3 composites and its time dependence after poling

    Get PDF
    Solvent cast and compression molded composite films based on poly(vinylidene fluoride-trifluoroethylene), containing pristine and silylated BaTiO3 particles, were poled, and their electromechanical response (d(33)), their dielectric properties, and the crystalline structure of the embedded BaTiO3 particles, probed by X-ray diffraction, were recorded during one week. Their d(33) was also measured after long-term aging (>3 years). During this time the d(33) decreased for all composites. The d(33) of solvent cast composites was higher when surface modified particles were used, both immediately after poling and after aging, while for compression molded composites only slight differences in the initial and aged d(33) of materials containing pristine versus modified particles were found. However the decay rate of d(33) in the short time after poling was highly affected by the surface modification of the particles for both the solvent cast and the compression molded composites. The results suggest that other phenomena besides the polarization of the ceramic particles and of the polymer matrix contribute to the measured electromechanical response of the composites. Charge accumulation and differences in the charge distribution due to the presence of the silane layer on the surface of BaTiO3 may play an important role. (C) 2015 Elsevier Ltd. All rights reserved

    What static and dynamic properties should slalom skis possess? Judgments by advanced and expert skiers

    Get PDF
    Flexural and torsional rigidity are important properties of skis. However, the flexural and torsional rigidity that lead to optimal performance remain to be established. In the present study, four pairs of slalom skis that differed in flexural and torsional rigidity were tested by advanced and expert skiers. Using a 10-item questionnaire, different aspects of the skis’ performance were rated on a 9-point scale. For each pair of skis, physical measurements were compared with the ratings of the two groups of skiers. Correlations (Spearman) were then determined between (i) different mechanical properties of the skis (static and dynamic), (ii) subjective assessments of the participants, and (iii) properties of the skis and the participants’ assessments. The latter showed that expert skiers rate the aspects of the skis more accurately than advanced skiers. Importantly, expert skiers are particularly sensitive to torsion of the skis. These results suggest that such highly rated elements should be addressed in future ski designs
    • 

    corecore