23 research outputs found

    Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat

    Get PDF
    Three bioactive sphingolipids, namely sphingosine-1-phosphate (S1P), ceramide (CER) and sphingosine (SPH) were shown to be involved in ischemia/reperfusion injury of the heart. S1P is a powerful cardioprotectant, CER activates apoptosis and SPH in a low dose is cardioprotective whereas in a high dose is cardiotoxic. The aim of the present study was to examine effects of experimental myocardial infarction on the level of selected sphingolipids in plasma, erythrocytes and platelets in the rat. Myocardial infarction was produced in male Wistar rats by ligation of the left coronary artery. Blood was taken from the abdominal aorta at 1, 6 and 24 h after the ligation. Plasma, erythrocytes and platelets were isolated and S1P, dihydrosphingosine-1-phosphate (DHS1P), SPH, dihydrosphingosine (DHS) and CER were quantified by means of an Agilent 6460 triple quadrupole mass spectrometer using positive ion electrospray ionization source with multiple reaction monitoring. The infarction reduced the plasma level of S1P, DHS1P, SPH and DHS but increased the level of total CER. In erythrocytes, there was a sharp elevation in the level of SPH and DHS early after the infarction and a reduction after 24 h whereas the level of S1P, DHS1P and total CER gradually increased. In platelets, the level of each of the examined compounds profoundly decreased 1 and 6 h after the infarction and partially normalized in 24 h. The results obtained clearly show that experimental heart infarction in rats produces deep changes in metabolism of sphingolipids in the plasma, platelets and erythrocytes

    Aerobic Training in Rats Increases Skeletal Muscle Sphingomyelinase and Serine Palmitoyltransferase Activity, While Decreasing Ceramidase Activity

    Get PDF
    Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles

    Liver X Receptor Agonist TO901317 Prevents Diacylglycerols Accumulation in the Heart of Streptozotocin-Diabetic Rats

    No full text
    Background/Aims: Liver X receptors (LXRα and LXRβ) are ligand-activated transcription factors that regulate expression of genes involved in lipid and cholesterol metabolism. LXR expression has been identified in the heart, and enhanced LXR activity in the streptozotocin (STZ) diabetic myocardium was reported recently. The aim of this study was to investigate effect of in vivo LXR activation on myocardial lipid metabolism under conditions of STZ-induced diabetes. Methods: Wistar rats were randomly divided into three experimental groups: non-diabetic control, treated with STZ, and treated with STZ and LXR agonist - TO901317. Diabetes was induced by a single intraperitonal injection of STZ at a dose of 55 mg/kg. LXR agonist was administrated once daily in the morning by an oral gavage at a dose of 10 mg/kg/d during the last week of the experiment. After anesthesia samples of blood and the left ventricle were taken. Results: TO901317 administration increased expression of both LXR isoforms and its target genes: sterol response element binding protein 1c (SREBP-1c) and acetyl-coenzyme A carboxylase 1 (ACC1) in the heart of streptozotocin-diabetic rats. Treatment with LXR agonist had no effect on plasma lipids and glucose in the diabetic rats. Concomitantly, content of the examined lipid classes in the diabetic heart (nonesterified fatty acids, triacylglycerols, phospholipids, cholesterol esters, ceramide) was unchanged after treatment with TO901317. On the contrary, myocardial level of cholesterol and diacylglycerols (DAG) was decreased after LXR activation in diabetic rats, the change in DAG level was associated with downregulated expression of adipose triglyceride lipase (ATGL). Conclusion: Activation of LXRs by TO901317 protects cardiomyocytes against DAG accumulation and thus may reverse disturbances in lipid metabolism observed in streptozotocin-diabetic heart

    LXR Agonist T0901317-Induced Hyperlipidemia Does Not Lead to Lipid Accumulation in the Rat Heart

    No full text
    Background/Aims: Liver X receptors (LXRα and LXRβ) are ligand-activated transcription factors that regulate expression of genes involved in lipid and cholesterol metabolism. LXR expression has been identified in human and rodent cardiac tissue, however, its role in this tissue remains unclear. The aim of this study was to investigate effects of in vivo LXR activation on lipid metabolism in the rat myocardium under the conditions of low and high lipid intake. Methods: The experiments were performed on male Wistar rats fed for 5 weeks on either low fat diet (LFD) or high fat diet (HFD). Next, the animals were randomly divided into two groups receiving either LXR agonist - T0901317 (10mg/kg/d) or vehicle for the last week of the experiment. After anesthesia samples of the left ventricle and blood were taken. Results: It was found that LXRβ is the dominant isoform in the rat myocardium and the expression of both LXR isoforms did not change after administration of T0901317. Agonist treatment induced hyperlipidemia in low fat fed rats and this effect was amplified in high fat fed rats. LXR agonist elevated content of myocardial triacylglycerols in animals fed on LFD and content of phospholipids in animals fed on HFD. Levels of the remaining examined lipid classes (nonesterified fatty acids, diacylglycerol, free cholesterol, cholesterol esters, ceramide) was decreased or unchaged after LXR activation. Conclusion: We conclude that administration of T0901317 does not lead to severe myocardial lipid accumulation in rats despite of its high plasma availability

    Effect of plasma free fatty acid supply on the rate of ceramide synthesis in different muscle types in the rat.

    No full text
    Ceramide is a key compound in sphingolipid metabolism. Dynamics of ceramide synthesis is important in the several biological processes, such as induction of apoptosis or insulin resistance. So far, its de novo synthesis rate was evaluated indirectly, based on the content of the compound, its intermediates and the activity of respective enzymes. The aim of the present study was to directly measure ceramide synthesis rate (FSR) in different muscle types under varied plasma FFA supply in rat with the use of [U-13C] palmitate tracer and LC/MS/MS. The experiments were carried out on male Wistar rats, divided into three groups: 1-control, 2-with elevated plasma free fatty acid (FFA) concentration by means of intralipid and heparin, 3-with reduced plasma FFA concentration by means of nicotinic acid. The stable plasma FFA concentration and plasma [U-13C] palmitate enrichment was maintained for two hours by simultaneous infusion of the tracer and the respective compounds. At the end of the experiment, samples of blood from the abdominal aorta, the heart, diaphragm, soleus and white section of the gastrocnemius were taken. Muscle sphinganine, sphingosine and ceramide content and enrichment and plasma palmitate enrichment was measured with the use of LC/MS/MS. Plasma FFA concentration and composition was measured by means of gas-liquid chromatography. Under basal conditions ceramide FSR in the heart and the diaphragm was higher than in the soleus and the white gastrocnemius. Elevation in the plasma FFA concentration increased the FSR and ceramide content in each muscle, which correlated with increased HOMA-IR. The highest FSR was noted in the heart. Reduction in the plasma FFA concentration decreased ceramide FSR in each muscle type, which was accompanied by marked reduction in HOMA-IR. It is concluded that ceramide FSR depends on both the muscle type and the plasma FFA supply and is correlated with whole body insulin sensitivity under varying plasma FFA supply

    Insulin-Sensitizing Effect of LXR Agonist T0901317 in High-Fat Fed Rats is Associated with Restored Muscle GLUT4 Expression and Insulin-Stimulated AS160 Phosphorylation

    No full text
    Background/Aim: Liver X receptors (LXRs) are ligand-activated transcription factors that were shown to stimulate hepatic lipogenesis leading to liver steatosis and hypertriglyceridemia. Despite their pro-lipogenic action, LXR activators normalize glycemia and improve insulin sensitivity in rodent models of type 2 diabetes. Antidiabetic action of LXR agonists is thought to result from suppression of hepatic gluconeogenesis. However, it remains unclear whether LXR activation affects muscle insulin sensitivity. In the present study we attempted to answer this question. Methods: The experiments were performed on male Wistar rats fed for 5 weeks on either standard chow or high fat diet. The latter group was further divided into two subgroups receiving either selective LXR agonist - T0901317 (10mg/kg/d) or vehicle during the last week of the experiment. All animals were then anaesthetized and samples of the soleus as well as red and white sections of the gastrocnemius muscle were excised. Results: As expected, administration of T0901317 to high-fat fed rats augmented diet-induced hyperlipidemia. Nevertheless, it also normalized glucose tolerance and improved insulin-stimulated glucose uptake in isolated soleus muscle. In addition, LXR agonist completely restored glucose transporter 4 expression and insulin-stimulated Akt substrate of 160 kDa phosphorylation in all investigated muscles. Insulin-sensitizing effect of T0901317 was not related to changes in intramuscular level of lipid mediators of insulin resistance, since neither diacylglycerols nor ceramide content was affected by the treatment. Conclusion: We conclude that improvement in muscle insulin sensitivity is one of the mechanisms underlying the antidiabetic action of LXR activators
    corecore