57 research outputs found

    Cortical hypertrophy with a short, curved uncemented hip stem does not have any clinical impact during early follow-up

    Get PDF
    Background: Short stems have become more and more popular for cementless total hip arthroplasty in the past few years. While conventional, uncemented straight stems for primary total hip arthroplasty (THA) have shown high survival rates in the long term, it is not known whether uncemented short stems represent a reasonable alternative. As cortical hypertrophy has been reported for short stems, the aim of this study was to determine the radiographic prevalence of cortical hypertrophy and to assess the clinical outcome of a frequently used short, curved hip stem. Methods: We retrospectively studied the clinical and radiographic results of our first 100 consecutive THAs (97 patients) using the Fitmore® hip stem. Mean age at the time of index arthroplasty was 59 years (range, 19 – 79 years). Clinical outcome and radiographic results were assessed with a minimum follow-up of 2 years, and Kaplan-Meier survivorship analysis was used to estimate survival for different endpoints. Results: After a mean follow-up of 3.3 years (range, 2.0 – 4.4 years), two patients (two hips) had died, and three patients (four hips) were lost to follow-up. Kaplan-Meier analysis estimated a survival rate of 100 % at 3.8 years, with revision for any reason as the endpoint. No femoral component showed radiographic signs of loosening. No osteolysis was detected. Cortical hypertrophy was found in 50 hips (63 %), predominantly in Gruen zone 3 and 5. In the cortical hypertrophy group, two patients (two hips; 4 %) reported some thigh pain in combination with pain over the greater trochanter region during physical exercise (UCLA Score 6 and 7). There was no significant difference concerning the clinical outcome between the cortical hypertrophy and no cortical hypertrophy group. Conclusions: The survival rate and both clinical and the radiographic outcome confirm the encouraging results for short, curved uncemented stems. Postoperative radiographs frequently displayed cortical hypertrophy but it had no significant effect on the clinical outcome in the early follow-up. Further clinical and radiographic follow-up is necessary to detect possible adverse, long-term, clinical effects of cortical hypertrophy

    The Impact of Metal Ion Exposure on the Cellular Behavior of Human Osteoblasts and PBMCs: In Vitro Analyses of Osteolytic Processes

    Get PDF
    Osteolysis in the periprosthetic tissue can be caused by metallic wear particles and ions that can originate from implant surface corrosion. These products influence cellular behavior and stimulate the expression of proinflammatory cytokines. The purpose of this study was to evaluate the impact of CoCr29Mo6 ions on cell survival, differentiation, and cytokine expression in human osteoblasts and peripheral blood mononuclear cells (PBMCs). Thus, we exposed cells with a mixture of 200 mu g/L ion solution and determined cell viability and apoptosis/necrosis. Gene expression analyses of osteoblastic and osteoclastic differentiation markers as well as pro-osteolytic mediators (IL-6, IL-8, TNF-alpha, MCP-1, MMP1, TIMP1) were performed. These markers were also investigated in mixed cultures of adherent and non-adherent PBMCs as well as in co-cultures of human osteoblasts and PBMCs. The ion solution induced necrosis in osteoblasts and PBMCs in single cultures. All examined mediators were highly expressed in the co-culture of osteoblasts and PBMCs whereas in the single cell cultures only IL-6, IL-8, and MMP1 were found to be stimulated. While the applied concentration of the CoCr29Mo6 ion solutions had only marginal effects on human osteoblasts and PBMCs alone, the co-culture may provide a comprehensive model to study osteolytic processes in response to Co and Cr ions

    Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    No full text
    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001) were observed for the unstable knee (14.58±0.56 mg/106 cycles) compared to the stable knee (7.97 ± 0.87 mg/106 cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study

    Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    No full text
    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates ( ≤ 0.001) were observed for the unstable knee (14.58 ± 0.56 mg/10 6 cycles) compared to the stable knee (7.97 ± 0.87 mg/10 6 cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations ( ≤ 0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study

    Current design and cement mantle thickness in hip arthroplasty : Theory and analysis of register data

    No full text
    Hintergrund In diesem Artikel wird ein Überblick und Vergleich der am häufigsten verwendeten zementierten Hüftschäfte, gruppiert in die verschiedenen Schafttypen und Zementmanteldicken, gegeben, um zu sehen, welche Kombination gut abschneidet. Methodik Aus dem Endoprothesenregister Deutschland wurden die Revisionsraten zementierter Schaftarten kategorisiert und die Revisionsraten von 3 und 5 Jahren erfasst und analysiert. Für die Recherche lag die Konzentration auf den Schäften Exeter, C‑Stem, MS-30, Excia, Bicontact, Charnley, Müller Geradschaft, Twinsys, Corail, Avenir, Quadra und dem Lubinus SP II. Ein wichtiger Aspekt lag darin, welcher Schaft favorisiert implantiert wird und welche Zementiertechnik in Hinblick auf die geplante Zementmanteldicke angewendet wird. Um einen Trend in der zementierten Hüftendoprothetik herauszufinden, wurden zusätzlich die Daten des dänischen, schwedischen, norwegischen, schweizerischen, neuseeländischen, englischen und australischen Endoprothesenregister verglichen. Ergebnisse und Schlussfolgerung Die meisten Länder nutzen zementierte Prothesen nach dem Kraftschlussprinzip (Exeter, MS30, C‑Stem etc.) oder dem Formschlussprinzip (Charnley, Excia, Bicontact), welche mit einer Zementmanteldicke von 2–4 mm implantiert werden. Jedoch hat sich in Deutschland und der Schweiz ein Trend zur Line-to-Line-Technik, mit einer geplanten Zementmanteldicke von 1 mm (Twinsys, Corail, Avenir, Quadra) aufgezeigt, dem Prinzip der Müller-Geradschaft-Prothese und der Kerboul-Charnley-Prothese folgend, auch wenn diese an sich als „french paradoxon“ postuliert werden. In den EPRD-5-Jahres-Ergebnissen scheinen die neueren Line-to-Line-Prothesen etwas schlechter abzuschneiden. Die besten Ergebnisse erzielt der „MS 30“ in Deutschland und der „Exeter“ in England. Hierbei handelt es sich um polierte Geradschäfte mit Zentraliser und Subsidence-Raum an der Spitze mit einem 2–4 mm Zementmantel in guter Zementiertechnik.Background In this article, an overview and comparison of the most commonly used cemented hip stems, grouped into different stem types and cement mantle thickness, is given to see which combination performs well. Methodology Revision rates of cemented stem types were categorized from the Endoprosthesis Register-Germany, and 3‑ and 5‑year revision rates were reported and analyzed. For the research, the focus was on the Exeter, C‑Stem, MS-30, Excia, Bicontact, Charnley, Müller straight stem, Twinsys, Corail, Avenir, Quadra, and the Lubinus SP II stems. An important aspect was which stem is preferred to be implanted and which cementing technique is used with regard to the planned cement mantle thickness. In order to identify a trend in cemented hip arthroplasty, data from the Danish, Swedish, Norwegian, Swiss, New Zealand, English and Australian arthroplasty registers were also compared. Results and conclusion Most countries use cemented prostheses according to the taper slip principle (Exeter, MS30, C‑Stem etc) or the composite beam (Charnley, Excia, Bicontact), which are implanted with a cement mantle thickness of 2–4 mm. However, a trend has emerged in Germany and Switzerland towards the line-to-line technique, with a planned cement mantle thickness of 1 mm (Twinsys, Corail, Avenir, Quadra), following the principle of the Müller straight stem prosthesis and the Kerboul-Charnley prosthesis, even though these are postulated to be “French paradoxes” in themselves. In the EPRD 5‑year results, the newer line-to-line prostheses seem to perform slightly worse. The best results are achieved by the “MS 30” in Germany and the “Exeter” in England. These are polished straight stems with centralizer and subsidence space at the apex with a 2–4 mm cement mantle in good cementing technique

    IgY Targeting Bacterial Quorum-Sensing Molecules in Implant-Associated Infections

    No full text
    Background: Implant-associated infections are still a major complication in the field of orthopedics. Bacteria can form biofilms on implant surfaces, making them more difficult to detect and treat. Since standard antibiotic therapy is often impaired in biofilm infections, particular interest is directed towards finding treatment alternatives. Biofilm-formation is a well-organized process during which bacteria communicate via quorum-sensing molecules (QSM). The aim of this study was to inhibit bacterial communication by directing avian IgY against specific QSM. Methods: Chicken were immunized against the following QSM: (1) AtlE, a member of the autolysin family which mediates attachment to a surface in Staphylococcus epidermidis; (2) GroEL, the bacterial heat shock protein; (3) PIA (polysaccharide intercellular adhesion), which is essential for cell–cell adhesion in biofilms. Staphylococcus epidermidis biofilms were grown and inhibition of biofilm-formation by IgYs was evaluated. Additionally, human osteoblasts were cultivated and biocompatibility of IgYs was tested. Results: We were able to demonstrate that all IgYs reduced biofilm-formation, also without prior immunization. Therefore, the response was probably not specific with regard to the QSM. Osteoblasts were activated by all IgYs which was demonstrated by microscopy and an increased release of IL-8. Conclusions: In conclusion, avian IgY inhibits biofilm-formation, though the underlying mechanism is not yet clear. However, adverse effects on local tissue cells (osteoblasts) were also observed

    Primary rotational stability of various megaprostheses in a biomechanical sawbone model with proximal femoral defects extending to the isthmus.

    No full text
    Fixation of proximal femoral megaprostheses is achieved in the diaphyseal isthmus. We hypothesized that after extended bone resection including the proximal part of the isthmus a reduced length of fixation will affect the stability and fixation characteristics of these megaprostheses. The aim of this study was to analyze in a validated sawbone model with extended proximal femoral defects which types of implants have sufficient primary stability to allow osteointegration and to describe their fixation characteristics.Four different cementless megaprostheses were implanted into 16 Sawbones with an AAOS type III defect after resection 11 cm below the lesser trochanter involving the proximal isthmus. To determine the primary implant stability relative micromotions between bone and implant were measured in relation to a cyclic torque of 7Nm applied on the longitudinal axis of the implant. We determined the fixation characteristics of the different implant designs by comparing these relative micromotions along the longitudinal stem axis.In the tested sawbones all studied implants showed sufficient primary stability to admit bone integration with relative micromotions below 150 µm after adapting our results to physiologic hip joint loadings. Different fixation characteristics of the megaprostheses were determined, which could be explained by their differing design and fixation concepts.Cementless megaprostheses of different designs seem to provide sufficient primary stability to bridge proximal femoral defects if the diaphyseal isthmus is partially preserved. In our sawbone model the different implant fixation patterns can be related to their stem designs. No evidence can be provided to favor one of the studied implants in this setting. However, femoral morphology is variable and in different isthmus configurations specific implant designs might be appropriate to achieve the most favorable primary stability, which enables bone integration and consequently long term implant stability

    Effect of bone quality and quantity on the primary stability of dental implants in a simulated bicortical placement

    No full text
    Objectives!#!Conventional dental implants inserted in the molar region of the maxilla will reach into the sinus maxillaris when alveolar ridge height is limited. When surgery is performed without prior augmentation of the sinus floor, primary stability of the implant is important for successful osseointegration. This study aimed at identifying the impact of bone quality and quantity at the implantation site on primary implant stability of a simulated bicortical placement.!##!Materials and methods!#!In our in vitro measurements, bone mineral density, total bone thickness and overall cortical bone thickness were assessed by micro-computed tomography (ÎĽCT) of pig scapulae, which resembled well the bicortical situation found in human patients. Dental implants were inserted, and micromotion between bone and implant was measured while loading the implant with an axial torque.!##!Results!#!The main findings were that primary implant stability did not depend on total bone thickness but tended to increase with either increasing bone mineral density or overall cortical bone thickness.!##!Clinical relevance!#!Limited bone height in the maxilla is a major problem when planning dental implants. To overcome this problem, several approaches, e.g. external or internal sinus floor elevation, have been established. When planning the insertion of a dental implant an important aspect is the primary stability which can be expected. With other factors, the dimensions of the cortical bone might be relevant in this context. It would, therefore, be helpful to define the minimum thickness of cortical bone required to achieve sufficient primary stability, thus avoiding additional surgical intervention

    Hard chrome-coated and fullerene-doped metal surfaces in orthopedic bearings

    No full text
    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr6+) electrolyte with a reduced chromium trioxide (CrO3) content, both without solid additives and (c) with the addition of fullerene (C60) nanoparticles; and (d) a trivalent chromium (Cr3+) electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23–40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect

    Wear performance of ceramic-on-metal hip bearings.

    Get PDF
    Ceramic-on-metal (CoM) bearings are considered to be a promising alternative to polyethylene-based bearings or hard-on-hard bearings (Ceramic-on-Ceramic (CoC) and Metal-on-Metal (MoM)). Although, CoM shows lower wear rates than MoM, in-vitro wear testing of CoM shows widely varying results. This may be related to limitations of wear-measuring methods. Therefore, the aim of this study was to improve the gravimetric measurement technique and to test wear behaviour of CoM bearings compared to CoC bearings. Level walking according to ISO-14242 was simulated for four CoM and four CoC bearings. Prior to simulation, errors in measurement of gravimetric wear were detected and improvements in measurement technique incorporated. The results showed no differences in mean wear rates between CoM and CoC bearings. However, the CoM bearings showed wear results over a wide range of wear performance. High reliability of wear results was recorded for the CoC bearings. Material transfer was observed on the ceramic heads of the CoM bearings. Therefore, for level walking a partial mixed or boundary lubrication has to be assumed for this type of bearing. CoM is a highly sensitive wear-couple. The reasons for the observed behaviour cannot be clarified from this study. Simulator studies have to be considered as an ideal loading condition. Therefore, high variations in wear rates as seen in this study, even at low levels, may have an adverse effect on the in-vivo wear behavior. Careful clinical use may be advisable until the reasons for the variation are fully clarified and understood
    • …
    corecore