29 research outputs found
On the comparison between pre- and post-surgery nasal anatomies via computational fluid dynamics
Nasal breathing difficulties (NBD) are widespread and difficult to diagnose;
the failure rate of their surgical corrections is high. Computational Fluid
Dynamics (CFD) enables diagnosis of NBD and surgery planning, by comparing a
pre-operative (pre-op) situation with the outcome of virtual surgery (post-op).
An equivalent comparison is involved when considering distinct anatomies in the
search for the functionally normal nose. Currently, this comparison is carried
out in more than one way, under the implicit assumption that results are
unchanged, which reflects our limited understanding of the driver of the
respiratory function.
The study describes how to set up a meaningful comparison. A pre-op anatomy,
derived via segmentation from a CT scan, is compared with a post-op anatomy
obtained via virtual surgery. State-of-the-art numerical simulations for a
steady inspiration carry out the comparison under three types of global
constraints, derived from the field of turbulent flow control: a constant
pressure drop (CPG) between external ambient and throat, a constant flow rate
(CFR) through the airways and a constant power input (CPI) from the lungs can
be enforced. A significant difference in the quantities of interest is observed
depending on the type of comparison. Global quantities (flow rate, pressure
drop, nasal resistance) as well as local ones are affected. The type of flow
forcing affects the outcome of the comparison between pre-op and post-op
anatomies. Among the three available options, we argue that CPG is the least
adequate. Arguments favouring either CFR or CPI are presented
On the comparison between pre- and post-surgery nasal anatomies via computational fluid dynamics
Nasal breathing difficulties (NBD) are widespread and difficult to diagnose; the failure rate of their surgical corrections is high. Computational fluid dynamics (CFD) enables diagnosis of NBD and surgery planning, by comparing a pre-operative (pre-op) situation with the outcome of virtual surgery (post-op). An equivalent comparison is involved when considering distinct anatomies in the search for the functionally normal nose. Currently, this comparison is carried out in more than one way, under the implicit assumption that results are unchanged, which reflects our limited understanding of the driver of the respiratory function. The study describes how to set up a meaningful comparison. A pre-op anatomy, derived via segmentation from a CT scan, is compared with a post-op anatomy obtained via virtual surgery. State-of-the-art numerical simulations for a steady inspiration carry out the comparison under three types of global constraints, derived from the field of turbulent flow control: a constant pressure drop (CPG) between external ambient and throat, a constant flow rate (CFR) through the airways and a constant power input (CPI) from the lungs can be enforced. A significant difference in the quantities of interest is observed depending on the type of comparison. Global quantities (flow rate, pressure drop and nasal resistance) as well as local ones are affected. The type of flow forcing affects the outcome of the comparison between pre-op and post-op anatomies. Among the three available options, we argue that CPG is the least adequate. Arguments favouring either CFR or CPI are presented
Weakly nonlinear optimal perturbations
A simple approach is described for computing spatially extended, weakly nonlinear optimal disturbances, suitable for maintaining a disturbance-regeneration cycle in a simple shear flow. Weakly nonlinear optimals, computed over a short time interval for the expansion used to remain tenable, are oblique waves which display a shorter streamwise and a longer spanwise wavelength than their linear counterparts. Threshold values of the initial excitation energy, separating the region of damped waves from that where disturbances grow without bounds, are found. Weakly nonlinear optimal solutions of varying initial amplitudes are then fed as initial conditions into direct numerical simulations of the Navier–Stokes equations and it is shown that the weakly nonlinear model permits the identification of flow states which cause rapid breakdown to turbulence
Three-dimensional instability of the flow around a rotating circular cylinder
The two-dimensional stationary flow past a rotating cylinder is analyzed for both two and three-dimensional perturbations. The instability mechanisms for the high and low- frequency modes are analyzed and the complete neutral curve presented. It is shown that the first bifurcation in the case of the rotating cylinder occurs for stationary three- dimensional perturbations, confirming recent experiments. Interestingly, the critical Reynolds number at high rotation rates is lower than the one for the stationary circular cylinder. The spatial characteristics of the disturbance and a qualitative comparison with the re- sults obtained for linear flows suggest that the stationary unstable three-dimensional mode could be of a hyperbolic nature
Mechanical Models of the Dynamics of Vitreous Substitutes
We discuss some aspects of the fluid dynamics of vitreous substitutes in the vitreous chamber, focussing on the flow induced by rotations of the eye bulb. We use simple, yet not trivial, theoretical models to highlight mechanical concepts that are relevant to understand the dynamics of vitreous substitutes and also to identify ideal properties for vitreous replacement fluids. We first recall results by previous authors, showing that the maximum shear stress on the retina grows with increasing viscosity of the fluid up to a saturation value. We then investigate how the wall shear stress changes if a thin layer of aqueous humour is present in the vitreous chamber, separating the retina from the vitreous replacement fluid. The theoretical predictions show that the existence of a thin layer of aqueous is sufficient to substantially decrease the shear stress on the retina. We finally discuss a theoretical model that predicts the stability conditions of the interface between the aqueous and a vitreous substitute. We discuss the implications of this model to understand the mechanisms leading to the formation of emulsion in the vitreous chamber, showing that instability of the interface is possible in a range of parameters relevant for the human eye
First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder
The first bifurcation and the instability mechanisms of shear-thinning and shearthickening fluids flowing past a circular cylinder are studied using linear theory and numerical simulations. Structural sensitivity analysis based on the idea of a \u2018wavemaker\u2019 is performed to identify the core of the instability. The shear-dependent viscosity is modelled by the Carreau model where the rheological parameters, i.e. the power-index and the material time constant, are chosen in the range 0.4 < n < 1.75 and 0.1<\u3bb<100. We show how shear-thinning/shear-thickening effects destabilize/stabilize the flow dramatically when scaling the problem with the reference zero-shear-rate viscosity. These variations are explained by modifications of the steady base flow due to the shear-dependent viscosity; the instability mechanisms are only slightly changed. The characteristics of the base flow, drag coefficient and size of recirculation bubble are presented to assess shear-thinning effects. We demonstrate that at critical conditions the local Reynolds number in the core of the instability is around 50 as for Newtonian fluids. The perturbation kinetic energy budget is also considered to examine the physical mechanism of the instability
Stabilizing effect of porosity on a flapping filament
reserved4siAbstract A new way of handling, simultaneously, porosity and bending resistance of a massive filament is proposed. Our strategy extends the previous methods where porosity was taken into account in the absence of bending resistance of the structure and overcomes related numerical issues. The new strategy has been exploited to investigate how porosity affects the stability of slender elastic objects exposed to a uniform stream. To understand under which conditions porosity becomes important, we propose a simple resonance mechanism between a properly defined characteristic porous time-scale and the standard characteristic hydrodynamic time-scale. The resonance condition results in a critical value for the porosity above which porosity is important for the resulting filament flapping regime, otherwise its role can be considered of little importance. Our estimation for the critical value of the porosity is in fairly good agreement with our DNS results. The computations also allow us to quantitatively establish the stabilizing role of porosity in the flapping regimes.mixedNatali, Damiano; Pralits, Jan O.; Mazzino, Andrea; Bagheri, ShervinNatali, Damiano; Pralits, JAN OSCAR; Mazzino, Andrea; Bagheri, Shervi