190 research outputs found

    Actieplan Bos en Hout : Een verandering in het denken over de bos- en houtketen in Nederland

    Get PDF
    Op 26 oktober 2016 ondertekendenpremier Rutte en staatssecretaris Dijksmaen twintig organisaties het ActieplanBos en Hout tijdens de nationaleKlimaattop. Nooit eerder ondertekendeeen Nederlandse premier een actieplanop het gebied van Bos en Hout. Watmaakt dit zo urgent? Wat is er nu andersdan in het verleden en waarom werdenvelen verrast door de publiciteit rond hetvoornemen 100.000 hectare nieuw bosaan te planten

    Assessing pollinator habitat suitability considering ecosystem condition in the Hannover Region, Germany

    Get PDF
    Context: Habitat suitability for pollinator species is an important indicator for pollination ecosystem service potential, i.e. for biodiversity and crop provision. Modelling habitat suitability using an expert- and process-based models such as ESTIMAP-pollination is a common and accepted approach to spatially analyse pollination service potential and to make recommendations for planning. Objectives: However, the suitability as a pollinator habitat depends not only on the land use type. It is also important to consider the condition of the habitat. For this reason, ecosystem condition information was used as a parameter for ESTIMAP modelling for the first time. Ecosystem condition data was used besides the commonly (in ESTIMAP) used information from expert assessments and from land use data. Methods: As parameters for ecosystem condition, the management intensity in agro ecosystems, the management of forests and the proportion of green space in urban areas were included and affected the modelled habitat suitability for wild bees. Results: Not all ecosystem types of the region were equally affected by the inclusion of the ecosystem condition parameter in the model. The most affected types were agricultural areas, such as arable and horticultural biotopes, whose suitability values decreased by 25.7%. As a result, areas with low suitability account for 41% of the region and 76.6% of the agro ecosystems. In forest, shrubs and woody plants land use types, the suitability decreased respectively by 4.3 and 6%. On the other hand, urban ecosystems in the city of Hannover were characterised by relatively good habitat suitabilities, especially in the proximity of wide urban forests. In 3.4% of the agricultural land, measures to support pollinators have been established. 1.6% of these measures are located in areas with low suitability. Conclusions: The results show that ecosystem condition is, in addition to land use type, an important parameter to indicate habitat suitability for pollinators. Especially for ecosystem types with varying habitat suitabilities, such as agro ecosystems, the implementation of ecosystem condition parameters is recommendable. However, the selection of suitable ecosystem condition indicators still requires further research and concise definitions

    Herramientas de simulación para el apoyo de toma de decisiones en la gestión forestal adaptativa en Europa

    Get PDF
    In forest management there is a tendency towards measuring less and simulating more. In this context the development of reliable, user friendly forest simulators has become economically relevant. The objective of this perspective paper is to highlight the recent trends in forest simulation and to identify the remaining challenges to make forest simulation a reliable tool for forest policy and management. Experiences with forest simulators for various purposes in different geographical contexts illustrate how the important challenges of forest decision support can be addressed through flexible customization for different end-user categories, offering spatially explicit approaches at the landscape scale, and integrating empirical and mechanistic models in hybrid and bayesian simulation approaches. Recent development trends in forest simulation for decision support are mainly related to the ever increasing calculation speed and capacity of computers, facilitating the development of robust tools with comfortable user interface and realistic functions and options. Another trend is the combination of simulation tools with optimization and choice algorithms fading away the difference between simulators and decision support systems. The remaining challenges are basically in the high expectations of stakeholders concerning the ability of simulators to predict a range of outcomes in terms of ecosystem services and sustainability indicators, as well as the quality of their outcome in terms of output credibility to stakeholders. Need for accepted and realistic model validation and verification methods preferably using empirical data is crucial in this matter.En la planificación de la gestión forestal existe la tendencia a medir menos y similar más. En este contexto, el desarrollo de simuladores forestales es económicamente relevante para el gestor. El objetivo de este artículo es el de discutir y enfatizar tendencias en el ámbito de la simulación forestal e identificar retos importantes para que la simulación forestal sea una herramienta fiable en el proceso decisorio de la planificación forestal y en el de desarrollo de políticas. Varios ejemplos de simuladores forestales existentes y que responden a objetivos y escalas geográficas distintas, ilustran como la capacidad analítica de los gestores puede mejorar sustancialmente para responder a los grandes retos en el proceso decisorio de la gestión forestal. El artículo presenta simuladores que responden a necesidades de diferentes usuarios y hacen frente a distintas cuestiones, utilizando distintos enfoques y herramientas; desde simuladores espacialmente explícitos basados en modelos empíricos que son integrados con herramientas de optimización, hasta simuladores mecanísticos o basados en enfoques híbridos y bayesianos. El desarrollo más reciente en simulación forestal esta sobretodo relacionado con el incremento de capacidad de cálculo de los computadores, lo que ha facilitado el desarrollo de herramienta robustas y visuales, fáciles de utilizar por los usuarios finales. Otra tendencia, importante es la combinación de herramientas de simulación con técnicas de optimización númerica, lo cual posibilita el desarrollo de los mas modernos sistemas de soporte a la decisión. Uno de los retos más importantes es el de colmar las altas expectativas de los principales agentes y centros decisores forestales en relación a la capacidad de los simuladores y sistemas de apoyo a la decisión para proporcionar información relevante en relación a los servicios ecosistémicos e indicadores de sostenibilidad. En este contexto, es necesaria la validación de los diferentes modelos que configuran los simuladores haciendo uso de información empírica disponible

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5,6,7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.EEA Santa CruzFil: Delavaux, Camille S. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Crowther, Thomas W. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Zohner, Constantin M. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Robmann, Niamh M. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Lauber, Thomas. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: van den Hoogen, Johan. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Kuebbing, Sara. Yale University. The Forest School at The Yale School of the Environment; Estados UnidosFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; Países BajosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Maynard, Daniel S. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Maynard, Daniel S. University College London. Department of Genetics, Evolution, and Environment; Reino Unid

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.EEA Santa CruzFil: Ma, Haozhi. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Crowther, Thomas W. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Mo, Lidong. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Maynard, Daniel S. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Maynard, Daniel S. University College London. Department of Genetics, Evolution, and Environment; Reino UnidoFil: Renner, Susanne S. Washington University. Department of Biology; Estados UnidosFil: van den Hoogen, Johan. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Zou, Yibiao. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Agricultural and Forest Sciences and Engineering; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC - AGROTECNIO – CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; Países BajosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral.; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Zohner, Constantin M. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); Suiz

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellitederived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.EEA Santa CruzFil: Mo, Lidong. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Zohner, Constantin M. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Reich, Peter B. University of Minnesota. Department of Forest Resources; Estados UnidosFil: Reich, Peter B. Western Sydney University. Hawkesbury Institute for the Environment; Australia.Fil: Reich, Peter B. University of Michigan. Institute for Global Change Biology; Estados UnidosFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Agricultural and Forest Sciences and Engineering; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC - AGROTECNIO – CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; Países BajosFil: Renner, Susanne S. Washington University. Department of Biology; Estados UnidosFil: van den Hoogen, Johan. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Araza, Arnan. Wageningen University and Research; Países BajosFil: Herold, Martin. Helmholtz GFZ German Research Centre for Geosciences. Remote Sensing and Geoinformatics Section; Alemania.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral.; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Crowther, Thomas W. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); Suiz

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.EEA Santa CruzFil: Cazzolla Gatti, Roberto. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: Cazzolla Gatti, Roberto. University of Bologna. Department of Biological, Geological, and Environmental Sciences.Alma Mater Studiorum; ItaliaFil: Cazzolla Gatti, Roberto. Tomsk State University. Biological Institute; Rusia.Fil: Reichd, Peter B. University of Minnesota. Department of Forest Resources; Estados UnidosFil: Reichd, Peter B. University of Michigan. Institute for Global Change Biology and School for Environment and Sustainability; Estados UnidosFil: Reichd, Peter B. Western Sydney University. Hawkesbury Institute for the Environment; Australia.Fil: Gamarra, Javier G. P. FAO. Forestry Department; ItaliaFil: Crowtherh, Tom. Institute of Integrative Biology; SuizaFil: Hui, Cang. Stellenbosch University. iCentre for Invasion Biology. Department of Mathematical Sciences; SudáfricaFil: Hui, Cang. African Institute for Mathematical Sciences. Mathematical Biology Unit; SudáfricaFil: Morera, Albert. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: Morera, Albert. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Bastin, Jean-Francois. University of Liege. TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech; BélgicaFil: de-Miguel, Sergio. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Jan Nabuurs, Gert. Wageningen University. Research Forest Ecology and Forest Management Group; Países BajosFil: Svenning, Jens -Christian. Aarhus University. Center for Biodiversity Dynamics in a Changing World (BIOCHANGE). Department of Biology; DinamarcaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados Unido
    corecore