6 research outputs found

    Comparison of Gd addition effect on the superconducting properties of FeSe0.5Te0.5 bulks under ambient and high-pressure conditions

    Full text link
    We have prepared a series of (FeSe0.5Te0.5 + xGd) bulk samples, with x = 0, 0.03, 0.05, 0.07, 0.1 and 0.2, through the convenient solid-state reaction method at ambient pressure (CSP). High gas pressure and high-temperature synthesis methods (HP-HTS) are also applied to grow the parent compound (x = 0) and 5-wt% of Gd-added bulks. Structural, microstructural, transport and magnetic characterizations have been performed on these samples in order to draw the final conclusion. Our analysis results that the HP-HTS applied for the parent compound enhances the transition temperature (Tc) and the critical current density (Jc) with the improved sample density and intergrain connections. The lattice parameter c is increased with Gd additions, suggesting a small amount of Gd enters the tetragonal lattice of FeSe0.5Te0.5 and the Gd interstitial sites are along the c-axis. A systematic decrease of the onset transition temperature Tc is observed with Gd additions, however, the calculated Jc of these Gd-added samples is almost the same as that of the parent compound prepared by CSP. It specifies that there is no improvement of the grain connections or pinning properties due to these rare earth additions. However, Gd-added FeSe0.5Te0.5 bulks prepared by HP-HTS have revealed a slightly improved critical current density due to improved grain connections and sample density but have a lower transition temperature than that of the parent compounds.Comment: 33 pages, 9 figures, 3 table

    Physicochemical Analysis of the Particulate Matter Emitted from Road Vehicle Engines

    No full text
    Air pollution with particulate matter from transport sources is a serious problem in terms of air quality and its impact on human health. The article attempts to test the emitted particles from piston engines in terms of their physical properties and chemical composition. The research test objects were a diesel engine with Euro 5 emission class and a petrol engine, which was a part of the scooter drive system. The conducted research consisted in the analysis of the number, mass, and volume of particles, as well as chemical analysis, using the methods: Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope with Energy Dispersive Spectroscopy (SEM-EDS), and Evolved gas analysis (EGA). The diesel engine emitted particles in the range of 50–120 nm. With the increase in the engine load, the specific emission of particulate matter increased. In the case of a gasoline engine running without load, the emission of particles smaller than 30 nm was mainly observed. Increasing load of the gasoline engine resulted in an increase in both the concentration of particles and their diameter (average diameter to 90 nm). FTIR analysis showed higher black carbon content in the case of the sample taken from the diesel engine. In order to carry out a more detailed chemical analysis, the EGA and SEM methods were used. On their basis, the chemical composition of particles was presented, and a greater ability to agglomerate of a gasoline engine particles was found

    Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

    No full text
    Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1−xMnxO ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1−xMnxO was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1−xMnxO particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles

    Microwave-Assisted Hydrothermal Synthesis of Zinc-Aluminum Spinel ZnAl2O4

    No full text
    The drawback of the hydrothermal technique is driven by the fact that it is a time-consuming operation, which greatly impedes its commercial application. To overcome this issue, conventional hydrothermal synthesis can be improved by the implementation of microwaves, which should result in enhanced process kinetics and, at the same time, pure-phase and homogeneous products. In this study, nanometric zinc aluminate (ZnAl2O4) with a spinel structure was obtained by a hydrothermal method using microwave reactor. The average ZnAl2O4 crystallite grain size was calculated from the broadening of XRD lines. In addition, BET analysis was performed to further characterize the as-synthesized particles. The synthesized materials were also subjected to microscopic SEM and TEM observations. Based on the obtained results, we concluded that the grain sizes were in the range of 6–8 nm. The surface areas measured for the samples from the microwave reactor were 215 and 278 m2 g−1

    Hydrothermal Synthesis of Zinc Oxide Nanoparticles Using Different Chemical Reaction Stimulation Methods and Their Influence on Process Kinetics

    No full text
    The aim of this work was to study the effect of the applied chemical reaction stimulation method on the morphology and structural properties of zinc oxide nanoparticles (ZnONPs). Various methods of chemical reaction induction were applied, including microwave, high potential, conventional resistance heater and autoclave-based methods. A novel, high potential-based ZnONPs synthesis method is herein proposed. Structural properties–phase purity, grain size–were examined with XRD methods, the specific surface area was determined using BET techniques and the morphology was examined using SEM. Based on the results, the microwave and autoclave syntheses allowed us to obtain the desired phase within a short period of time. The impulse-induced method is a promising alternative since it offers a non-equilibrium course of the synthesis process in an highly energy-efficient manner

    Luminescence Properties of Nano Zinc Oxide Doped with Al(III) Ions Obtained in Microwave-Assisted Hydrothermal Synthesis

    No full text
    The hydrothermal method of obtaining nano zinc oxide doped with different contents of aluminum ions (III) was presented and discussed in this paper. Aqueous solution of Zn(NO3)2*6H2O and Al(NO3)3*9H2O salts mixture were used as the synthesis precursor. In order to reduce the process time all reactions were performed in a microwave reactor. The influence of process parameters and the content of impurity ions on the properties of synthesized nano zinc oxide were analyzed. In addition to zinc oxide doped with Al(III) ions, an additional spinel phase (ZnAl2O4) was obtained. The luminescent properties of nano zinc oxide as a function of the dopant ions were also discussed. Based on the luminescence measurements results, it was found that the luminescence intensity decreases with the increasing dopant content. The obtained materials are aimed to be implemented as luminescent materials in optoelectronic and sensors
    corecore