4 research outputs found

    No Time Dependence of Ciprofloxacin Pharmacokinetics in Critically Ill Adults: Comparison of Individual and Population Analyses

    No full text
    The aim of this prospective PK study was to evaluate the pharmacokinetics of ciprofloxacin dosed within the first 36 h (early phase) and after 3 days of treatment (delayed phase) using individual and population PK analysis. The secondary aim of the study was to evaluate possible dosing implications of the observed PK differences between early and delayed phases to achieve a PK/PD target for ciprofloxacin of AUC24/MIC ≥ 125. Blood concentrations of ciprofloxacin (1 and 4 h after dose and trough) were monitored in critically ill adults in the early and delayed phases of the treatment. Individual and population PK analyses were performed. Complete concentration-time profiles in the early phase, delayed phase, and both phases were obtained from 29, 15, and 14 patients, respectively. No systematic changes in ciprofloxacin PK parameters between the early and delayed phases were observed, although variability was higher at the early phase. Both individual and population analyses provided similar results. Simulations showed that after standard dosing, it is practically impossible to reach the recommended ciprofloxacin PK/PD target (AUC/MIC ≥ 125) for pathogens with MIC ≥ 0.5 mg/L. A dosing nomogram utilizing patients’ creatinine clearance and MIC values was constructed. Both individual and population analyses provided similar results. Therapeutic drug monitoring should be implemented to safeguard the optimal ciprofloxacin exposure

    Rifampin-Releasing Triple-Layer Cross-Linked Fresh Water Fish Collagen Sponges as Wound Dressings

    No full text
    Objectives. Surgical wounds resulting from biofilm-producing microorganisms represent a major healthcare problem that requires new and innovative treatment methods. Rifampin is one of a small number of antibiotics that is able to penetrate such biofilms, and its local administration has the potential to serve as an ideal surgical site infection protection and/or treatment agent. This paper presents two types (homogeneous and sandwich structured) of rifampin-releasing carbodiimide-cross-linked fresh water fish collagen wound dressings. Methods. The dressings were prepared by means of the double-lyophilization method and sterilized via gamma irradiation so as to allow for testing in a form that is able to serve for direct clinical use. The mechanical properties were studied via the uniaxial tensile testing method. The in vivo rifampin-release properties were tested by means of a series of incubations in phosphate-buffered saline. The microbiological activity was tested against methicillin-resistant staphylococcus aureus (MRSA) employing disc diffusion tests, and the in vivo pharmacokinetics was tested using a rat model. A histological examination was conducted for the study of the biocompatibility of the dressings. Results. The sandwich-structured dressing demonstrated better mechanical properties due to its exhibiting ability to bear a higher load than the homogeneous sponges, a property that was further improved via the addition of rifampin. The sponges retarded the release of rifampin in vitro, which translated into at least 22 hours of rifampin release in the rat model. This was significantly longer than was achieved via the administration of a subcutaneous rifampin solution. Microbiological activity was proven by the results of the disc diffusion tests. Both sponges exhibited excellent biocompatibility as the cells penetrated into the scaffold, and virtually no signs of local irritation were observed. Conclusions. We present a novel rifampin-releasing sandwich-structured fresh water fish collagen wound dressing that has the potential to serve as an ideal surgical site infection protection and/or treatment agent

    Literatur

    No full text
    corecore