110 research outputs found
Microstructural enrichment functions based on stochastic Wang tilings
This paper presents an approach to constructing microstructural enrichment
functions to local fields in non-periodic heterogeneous materials with
applications in Partition of Unity and Hybrid Finite Element schemes. It is
based on a concept of aperiodic tilings by the Wang tiles, designed to produce
microstructures morphologically similar to original media and enrichment
functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small
set of square tiles and extended to larger domains by an inexpensive stochastic
tiling algorithm in a non-periodic manner. Feasibility of the proposed
methodology is demonstrated on constructions of stress enrichment functions for
two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first
revie
Biodiversity promotes resistance but dominant species shape recovery of grasslands under extreme drought
How biodiversity underpins ecosystem resistance (i.e. ability to withstand environmental perturbations) and recovery (i.e. ability to return to a pre-perturbation state), and thus, stability under extreme climatic events is a timely question in ecology. To date, most studies have focussed on the role of taxonomic diversity, neglecting how community functional composition and diversity beget stability under exceptional climatic conditions. In addition, land use potentially modulates how biodiversity and ecosystem functions respond to extreme climatic conditions.
Using an 11-year time-series of plant biomass from 150 permanent grassland plots spanning a gradient of land-use intensity, we examined how taxonomic and functional components of biodiversity affected resistance and recovery of biomass under extreme drought.
The association between biodiversity, land use and biomass varied across years, especially in the driest years. Species-rich or functionally diverse communities (associated with low land-use intensity) buffered extreme droughts better, while species-poor communities or those dominated by fast-growing species (associated with high land-use intensity) had higher recovery capabilities after a moderate-to-extreme drought.
Synthesis. Our results show that plant community functional and taxonomic components determine grasslands resistance and recovery under moderate-to-extreme drought. In turn, this points to the importance of designing landscapes with both extensively and intensively managed grasslands. Functionally or taxonomically rich communities (favoured under low land-use intensity) would preserve biomass under extreme droughts, whereas species-poor or fast-growing communities (favoured by high land-use intensity) would restore biomass after extreme droughts
Synchrony Matters More than Species Richness in Plant Community Stability at a Global Scale
The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.National Science Foundation DEB-8114302, DEB8811884, DEB-9411972, DEB-0080382, DEB-0620652, DEB-1234162, DEB0618210National Science Foundation Research Coordination Network DEB-1042132Institute on the Environment DG-0001-13Agency of the Czech Republic GACR16-15012SCzech Academy of Sciences RVO 67985939Comunidad AutĂłnoma de Madrid 2017-T2/AMB-5406Biotechnology and Biological Sciences Research Council BBS/E/C/000J030
GrassPlot v. 2.00 â first update on the database of multi-scale plant diversity in Palaearctic grasslands
Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331â347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems
Cumulative nitrogen enrichment alters the drivers of grassland overyielding
Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition
Directional trends in species composition over time can lead to a widespread overemphasis of yearâtoâyear asynchrony
Questions: Compensatory dynamics are described as one of the main mechanisms that increase community stability, e.g., where decreases of some species on a yearâtoâyear basis are offset by an increase in others. Deviations from perfect synchrony between species (asynchrony) have therefore been advocated as an important mechanism underlying biodiversity effects on stability. However, it is unclear to what extent existing measures of synchrony actually capture the signal of yearâtoâyear species fluctuations in the presence of longâterm directional trends in both species abundance and composition (species directional trends hereafter). Such directional trends may lead to a misinterpretation of indices commonly used to reflect yearâtoâyear synchrony.
Methods: An approach based on threeâterm local quadrat variance (T3) which assesses population variability in a threeâyear moving window, was used to overcome species directional trend effects. This âdetrendingâ approach was applied to common indices of synchrony across a worldwide collection of 77 temporal plant community datasets comprising almost 7,800 individual plots sampled for at least six years. Plots included were either maintained under constant âcontrolâ conditions over time or were subjected to different management or disturbance treatments.
Results: Accounting for directional trends increased the detection of yearâtoâyear synchronous patterns in all synchrony indices considered. Specifically, synchrony values increased significantly in ~40% of the datasets with the T3 detrending approach while in ~10% synchrony decreased. For the 38 studies with both control and manipulated conditions, the increase in synchrony values was stronger for longer time series, particularly following experimental manipulation.
Conclusions: Speciesâ longâterm directional trends can affect synchrony and stability measures potentially masking the ecological mechanism causing yearâtoâyear fluctuations. As such, previous studies on community stability might have overemphasised the role of compensatory dynamics in realâworld ecosystems, and particularly in manipulative conditions, when not considering the possible overriding effects of longâterm directional trends
GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board
LOTVS: a global collection of permanent vegetation plots
Analysing temporal patterns in plant communities is extremely important to quantify the extent and the consequences of ecological changes, especially considering the current biodiversity crisis. Long-term data collected through the regular sampling of permanent plots represent the most accurate resource to study ecological succession, analyse the stability of a community over time and understand the mechanisms driving vegetation change. We hereby present the LOng-Term Vegetation Sampling (LOTVS) initiative, a global collection of vegetation time-series derived from the regular monitoring of plant species in permanent plots. With 79 data sets from five continents and 7,789 vegetation time-series monitored for at least 6 years and mostly on an annual basis, LOTVS possibly represents the largest collection of temporally fine-grained vegetation time-series derived from permanent plots and made accessible to the research community. As such, it has an outstanding potential to support innovative research in the fields of vegetation science, plant ecology and temporal ecology
- âŠ