20 research outputs found

    Prenatal origin of childhood AML occurs less frequently than in childhood ALL

    Get PDF
    Background While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. Methods We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. Results In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. Conclusion In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases

    IL-10 Receptor Signaling Is Essential for T R 1 Cell Function In Vivo

    Get PDF
    Interleukin-10 (IL-10) is essential to maintain intestinal homeostasis. CD4+ T regulatory type 1 (TR1) cells produce large amounts of this cytokine and being therefore currently examined in clinical trials as T-cell therapy in patients with inflammatory bowel disease (IBD). However, factors and molecular signals sustaining TR1 cell regulatory activity still need to be identified in order to optimize the efficiency and to ensure the safety of these trials. We investigated the role of IL-10 signaling in mature TR1 cells in vivo

    Intestinal IL-1β Plays a Role in Protecting against SARS-CoV-2 Infection

    Get PDF
    The intestine is constantly balancing the maintenance of a homeostatic microbiome and the protection of the host against pathogens such as viruses. Many cytokines mediate protective inflammatory responses in the intestine, among them IL-1β. IL-1β is a proinflammatory cytokine typically activated upon specific danger signals sensed by the inflammasome. SARS-CoV-2 is capable of infecting multiple organs, including the intestinal tract. Severe cases of COVID-19 were shown to be associated with a dysregulated immune response, and blocking of proinflammatory pathways was demonstrated to improve patient survival. Indeed, anakinra, an Ab against the receptor of IL-1β, has recently been approved to treat patients with severe COVID-19. However, the role of IL-1β during intestinal SARS-CoV-2 infection has not yet been investigated. Here, we analyzed postmortem intestinal and blood samples from patients who died of COVID-19. We demonstrated that high levels of intestinal IL-1β were associated with longer survival time and lower intestinal SARS-CoV-2 RNA loads. Concurrently, type I IFN expression positively correlated with IL-1β levels in the intestine. Using human intestinal organoids, we showed that autocrine IL-1β sustains RNA expression of IFN type I by the intestinal epithelial layer. These results outline a previously unrecognized key role of intestinal IL-1β during SARS-CoV-2 infection

    TH17 Cell and Epithelial Cell Crosstalk during Inflammatory Bowel Disease and Carcinogenesis

    No full text
    The intestine is colonized by hundreds of different species of commensal bacteria, viruses, and fungi. Therefore, the intestinal immune system is constantly being challenged by foreign antigens. The immune system, the commensal microbiota, and the intestinal epithelial surface have to maintain a tight balance to guarantee defense against potential pathogens and to prevent chronic inflammatory conditions at the same time. Failure of these mechanisms can lead to a vicious cycle in which a perpetual tissue damage/repair process results in a pathological reorganization of the normal mucosal surface. This dysregulation of the intestine is considered to be one of the underlying causes for both inflammatory bowel disease (IBD) and colorectal cancer. TH17 cells have been associated with immune-mediated diseases, such as IBD, since their discovery in 2005. Upon mucosal damage, these cells are induced by a combination of different cytokines, such as IL-6, TGF-β, and IL-1β. TH17 cells are crucial players in the defense against extracellular pathogens and have various mechanisms to fulfill their function. They can activate and attract phagocytic cells. Additionally, TH17 cells can induce the release of anti-microbial peptides from non-immune cells, such as epithelial cells. The flip side of the coin is the strong potential of TH17 cells to be pro-inflammatory and promote pathogenicity. TH17 cells have been linked to both mucosal regeneration and inflammation. In turn, these cells and their cytokines emerged as potential therapeutic targets both for inflammatory diseases and cancer. This review will summarize the current knowledge regarding the TH17 cell-enterocyte crosstalk and give an overview of its clinical implications

    TNFα aggravates detrimental effects of SARS-CoV-2 infection in the liver

    No full text
    Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus does not only lead to pulmonary infection but can also infect other organs such as the gut, the kidney, or the liver. Recent studies confirmed that severe cases of COVID-19 are often associated with liver damage and liver failure, as well as the systemic upregulation of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα). However, the impact these immune mediators in the liver have on patient survival during SARS-CoV-2 infection is currently unknown. Here, by performing a post-mortem analysis of 45 patients that died from a SARS-CoV-2 infection, we find that an increased expression of TNFA in the liver is associated with elevated mortality. Using publicly available single-cell sequencing datasets, we determined that Kupffer cells and monocytes are the main sources of this TNFα production. Further analysis revealed that TNFα signaling led to the upregulation of pro-inflammatory genes that are associated with an unfavorable outcome. Moreover, high levels of TNFA in the liver were associated with lower levels of interferon alpha and interferon beta. Thus, TNFα signaling in the infected SARS-CoV-2 liver correlates with reduced interferon levels and overall survival time

    Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia

    No full text
    B-cell precursor childhood acute lymphoblastic leukemia with ETV6-RUNX1 (TELAML1) fusion has an overall good prognosis, but relapses occur, usually after cessation of treatment and occasionally many years later. We have investigated the clonal origins of relapse by comparing the profiles of genomewide copy number alterations at presentation in 21 patients with those in matched relapse (12-119 months). We identified, in total, 159 copy number alterations at presentation and 231 at relapse (excluding Ig/TCR). Deletions of CDKN2A/B or CCNC (6q16.2-3) or both increased from 38% at presentation to 76% in relapse, suggesting that cell-cycle deregulation contributed to emergence of relapse. A novel observation was recurrent gain of chromosome 16 (2 patients at presentation, 4 at relapse) and deletion of plasmocytoma variant translocation 1 in 3 patients. The data indicate that, irrespective of time to relapse, the relapse clone was derived from either a major or minor clone at presentation. Backtracking analysis by FISH identified a minor subclone at diagnosis whose genotype matched that observed in relapse similar to 10 years later. These data indicate subclonal diversity at diagnosis, providing a variable basis for intraclonal origins of relapse and extended periods (years) of dormancy, possibly by quiescence, for stem cells in ETV6-RUNX1(+) acute lymphoblastic leukemia. (Blood. 2011; 117(23): 6247-6254

    Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival

    No full text
    Objective!#!Reflux promotes esophageal adenocarcinomas (EACs) creating a chronic inflammatory environment. Survival rates are low due to early local recurrences and distant metastasis. Hence, there is a need for new potential treatment options like immunotherapies. However, the inflammatory microenvironment in EACs and its impact on patient outcome remain to be fully understood.!##!Methods!#!mRNA expression levels of pro- and anti-inflammatory markers in 39 EAC patients without neoadjuvant radio-chemotherapy were measured. Data were confirmed using flow cytometric analysis of freshly resected surgical specimens. Inflammatory alterations in premalignant lesions of Barrett's esophagus were analyzed by immunohistochemistry.!##!Results!#!Expression levels of IL22 were reduced in EAC, while expression levels of FOXP3, IL10 and CTLA4 were increased. Flow cytometry demonstrated a strong infiltration of CD4!##!Conclusion!#!EAC shows an anti-inflammatory environment, which strongly affects patient survival. The microscopically unaltered peritumoral tissue shows a similar anti-inflammatory pattern indicating an immunological field effect, which might contribute to early local recurrences despite radical resection. These data suggest that using checkpoint inhibitors targeting anti-inflammatory T cells would be a promising therapeutic strategy in EAC
    corecore