272 research outputs found

    Isolation and primary culture of various cell types from whole human endometrial biopsies

    Get PDF
    The isolation and primary culture of cells from human endometrial biopsies provides valuable experimental material for reproductive and gynaecological research. Whole endometrial biopsies are collected from consenting women and digested with collagenase and DNase I to dissociate cells from the extracellular matrix. Cell populations are then isolated through culturing, filtering and magnetic separation using cell-surface antigen markers. Here we provide a comprehensive protocol on how to isolate and culture individual cell types from whole endometrial tissues for use in in vitro experiments

    Deficiency in clonogenic endometrial mesenchymal stem cells in obese women with reproductive failure – a pilot study

    Get PDF
    The mechanisms of obesity associated reproductive complications remain poorly understood. Endometrial mesenchymal stem-cells are critical for cyclic renewal and uterine function. Recently, W5C5+ cells, with high clonogenicity, capable of producing endometrial stroma in vivo, have been described. We sought to investigate the abundance and cloning efficiency of W5C5+ and W5C5− endometrial cells in relation to Body Mass Index, age and reproductive outcome. Design W5C5+ and W5C5− cells were purified from mid-luteal endometrial biopsies (n = 54) by magnetic bead separation and subjected to in vitro colony-forming assays. Results First trimester pregnancy losses were significantly higher in obese subjects (n = 12) compared to overweight (n = 20) and subjects with normal Body Mass Index (n = 22) (P0.05). Conclusions Our observations suggest that the regenerative capacity and plasticity of the endometrium of obese women is suboptimal, which in turn may account for the increased risk of reproductive complications associated with obesity

    TGF beta 1 attenuates expression of prolactin and IGFBP-1 in decidualized endometrial stromal cells by both SMAD-dependent and SMAD-independent pathways

    Get PDF
    Background: Decidualization (differentiation) of the endometrial stromal cells during the secretory phase of the menstrual cycle is essential for successful implantation. Transforming Growth Factor beta 1 (TGF beta 1) canonically propagates its actions via SMAD signalling. A role for TGF beta 1 in decidualization remains to be established and published data concerning effects of TGF beta 1 on markers of endometrial decidualization are inconsistent. Methodology/Principal Findings: Non-pregnant endometrial stromal cells (ESC) and first trimester decidual stromal cells (DSC) were cultured in the presence or absence of a decidualizing stimulus. Incubation of ESCs with TGF beta 1 (10 ng/ml) down-regulated the expression of transcripts encoding the decidual marker proteins prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP-1) and tissue factor (TF). TGF beta 1 also inhibited secretion of PRL and IGFBP-1 proteins by ESCs and surprisingly this response preceded down-regulation of their mRNAs. In contrast, DSCs were more refractory to the actions of TGF beta 1, characterized by blunted and delayed down-regulation of PRL, IGFBP-1, and TF transcripts, which was not associated with a significant reduction in secretion of PRL or IGFBP-1 proteins. Addition of an antibody directed against TGF beta 1 increased expression of IGFBP-1 mRNA in decidualised cells. Knockdown of SMAD 4 using siRNAs abrogated the effect of TGF beta 1 on expression of PRL in ESCs but did not fully restore expression of IGFBP-1 mRNA and protein. Conclusions/Significance: TGF beta 1 inhibits the expression and secretion of decidual marker proteins. The impact of TGF beta 1 on PRL is SMAD-dependent but the impact on IGFBP1 is via an alternative mechanism. In early pregnancy, resistance of DSC to the impact of TGF beta 1 may be important to ensure tissue homeostasis

    Success after failure : the role of endometrial stem cells in recurrent miscarriage

    Get PDF
    Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure prior to conception

    The role of decidual subpopulations at implantation, menstruation and miscarriage

    Get PDF
    In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, estrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix and recruit bone marrow-derived decidual progenitors to accommodate the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engage innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continues progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations determines the recurrence risk of miscarriage and discuss emerging therapeutic strategies

    Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window

    Get PDF
    During the implantation window, the endometrium becomes poised to transition to a pregnant state, a process driven by differentiation of stromal cells into decidual cells (DC). Perturbations in this process, termed decidualization, leads to breakdown of the feto-maternal interface and miscarriage, but the underlying mechanisms are poorly understood. Here, we reconstructed the decidual pathway at single-cell level in vitro and demonstrate that stromal cells first mount an acute stress response before emerging as DC or senescent DC (snDC). In the absence of immune cell-mediated clearance of snDC, secondary senescence transforms DC into progesterone-resistant cells that abundantly express extracellular matrix remodelling factors. Additional single-cell analysis of midluteal endometrium identified DIO2 and SCARA5 as marker genes of a diverging decidual response in vivo. Finally, we report a conspicuous link between a pro-senescent decidual response in peri-implantation endometrium and recurrent pregnancy loss, suggesting that pre-pregnancy screening and intervention may reduce the burden of miscarriage

    JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation

    Get PDF
    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis

    Covalent attachment of fibronectin onto emulsion‐templated porous polymer scaffolds enhances human endometrial stromal cell adhesion, infiltration, and function

    Get PDF
    A novel strategy for the surface functionalization of emulsion‐templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine‐reactive N‐hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N‐sulfosuccinimidyl‐6‐(4′‐azido‐2′‐nitrophenylamino)hexanoate (sulfo‐SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6‐aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis‐amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion‐promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin‐conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types

    Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells : a randomised, double-blind placebo-controlled feasibility trial

    Get PDF
    Background: Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. Methods: A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. Findings: CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32–1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. Interpretation: Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. Funding: Tommy's Baby Charity. Clinical trial registration: EU Clinical Trials Register no. 2016-001120-54

    Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells

    Get PDF
    Endometrial decidualization represents an essential step for the successful implantation of the embryo; however, the molecular mechanism behind this differentiation process remains unclear. This study aimed to identify novel microRNAs (miRNAs) involved in the regulation of decidual gene expression in human endometrial stromal cells (HESCs). An in vitro analysis of primary undifferentiated and decidualizing HESCs was conducted. HESCs were isolated from hysterectomy specimens from normally cycling premenopausal women with uterine fibroids, who were not on hormonal treatment at the time of surgery. Primary HESCs were expanded in culture and decidualized with 8-bromo-cyclic adenosine monophosphate and medroxyprogesterone acetate. Microarray analysis identified six miRNAs differentially expressed in response to decidualization of HESCs. All but one miRNA were downregulated upon decidualization, including miR-542-3p. We demonstrated that miR-542-3p overexpression inhibits the induction of major decidual marker genes, including IGFBP1, WNT4 and PRL. In addition, miR-542-3p overexpression inhibited the morphological transformation of HESCs in response to deciduogenic cues. A luciferase reporter assay confirmed that the 3′-untranslated region of IGFBP1 mRNA is targeted by miR-542-3p. The results suggest that miR-542-3p plays an important role in endometrial decidualization by regulating the expression of major decidual marker genes
    corecore