4 research outputs found

    Mechanical Fractionation of Adipose Tissue:A Scoping Review of Procedures to Obtain Stromal Vascular Fraction

    Get PDF
    Clinical indications for adipose tissue therapy are expanding towards a regenerative-based approach. Adipose-derived stromal vascular fraction consists of extracellular matrix and all nonadipocyte cells such as connective tissue cells including fibroblasts, adipose-derived stromal cells (ASCs) and vascular cells. Tissue stromal vascular fraction (tSVF) is obtained by mechanical fractionation, forcing adipose tissue through a device with one or more small hole(s) or cutting blades between syringes. The aim of this scoping review was to assess the efficacy of mechanical fractionation procedures to obtain tSVF. In addition, we provide an overview of the clinical, that is, therapeutic, efficacy of tSVF isolated by mechanical fraction on skin rejuvenation, wound healing and osteoarthritis. Procedures to obtain tissue stromal vascular fraction using mechanical fractionation and their associated validation data were included for comparison. For clinical outcome comparison, both animal and human studies that reported results after tSVF injection were included. We categorized mechanical fractionation procedures into filtration (n = 4), centrifugation (n = 8), both filtration and centrifugation (n = 3) and other methods (n = 3). In total, 1465 patients and 410 animals were described in the included clinical studies. tSVF seems to have a more positive clinical outcome in diseases with a high proinflammatory character such as osteoarthritis or (disturbed) wound healing, in comparison with skin rejuvenation of aging skin. Isolation of tSVF is obtained by disruption of adipocytes and therefore volume is reduced. Procedures consisting of centrifugation prior to mechanical fractionation seem to be most effective in volume reduction and thus isolation of tSVF. tSVF injection seems to be especially beneficial in clinical applications such as osteoarthritis or wound healing. Clinical application of tSVF appeared to be independent of the preparation procedure, which indicates that current methods are highly versatile.</p

    Mechanical Fractionation of Adipose Tissue:A Scoping Review of Procedures to Obtain Stromal Vascular Fraction

    Get PDF
    Clinical indications for adipose tissue therapy are expanding towards a regenerative-based approach. Adipose-derived stromal vascular fraction consists of extracellular matrix and all nonadipocyte cells such as connective tissue cells including fibroblasts, adipose-derived stromal cells (ASCs) and vascular cells. Tissue stromal vascular fraction (tSVF) is obtained by mechanical fractionation, forcing adipose tissue through a device with one or more small hole(s) or cutting blades between syringes. The aim of this scoping review was to assess the efficacy of mechanical fractionation procedures to obtain tSVF. In addition, we provide an overview of the clinical, that is, therapeutic, efficacy of tSVF isolated by mechanical fraction on skin rejuvenation, wound healing and osteoarthritis. Procedures to obtain tissue stromal vascular fraction using mechanical fractionation and their associated validation data were included for comparison. For clinical outcome comparison, both animal and human studies that reported results after tSVF injection were included. We categorized mechanical fractionation procedures into filtration (n = 4), centrifugation (n = 8), both filtration and centrifugation (n = 3) and other methods (n = 3). In total, 1465 patients and 410 animals were described in the included clinical studies. tSVF seems to have a more positive clinical outcome in diseases with a high proinflammatory character such as osteoarthritis or (disturbed) wound healing, in comparison with skin rejuvenation of aging skin. Isolation of tSVF is obtained by disruption of adipocytes and therefore volume is reduced. Procedures consisting of centrifugation prior to mechanical fractionation seem to be most effective in volume reduction and thus isolation of tSVF. tSVF injection seems to be especially beneficial in clinical applications such as osteoarthritis or wound healing. Clinical application of tSVF appeared to be independent of the preparation procedure, which indicates that current methods are highly versatile.</p

    Intra-Articular Injection of Adipose-Derived Stromal Vascular Fraction in Osteoarthritic Temporomandibular Joints: Study Design of a Randomized Controlled Clinical Trial

    No full text
    Introduction: Temporomandibular joint (TMJ) osteoarthritis is a degenerative disease of the TMJ. It is characterized by progressive degradation of the extracellular matrix components of articular cartilage, with secondary inflammatory components leading to pain in the temporomandibular region and reduced mouth opening. Current treatments do not halt disease progression, hence the need for new therapies to reduce inflammation and, consequently, improve symptoms. The aim of our randomized controlled clinical trial protocol is to investigate the efficacy of adjuvant intra-articular injections of autologous tissue-like stromal vascular fraction (tSVF), compared to arthrocentesis alone, in reducing pain and improving mouth opening in TMJ osteoarthritis patients. Materials and Methods: The primary endpoint analysis will consist of the visual analogue scale (VAS) for pain. The secondary endpoint analyses will include maximal interincisal mouth opening measurements; assessment of oral health and mandibular function based on the oral health impact profile (OHIP) questionnaire and mandibular functional impairment questionnaire (MFIQ); complications during the follow up; synovial cytokine analysis at baseline and after 26 weeks; and nucleated cells and tSVF (immuno)histochemistry analyses of the intervention group. Discussion: Our randomized clinical trial protocol will be applied to evaluate the efficacy of a new promising tSVF injection therapy for TMJ osteoarthritis. The safety of intra-articular injections of tSVF has been proven for knee osteoarthritis. However, since a tSVF injection is considered a heterologous application of cell therapy, the regulatory requirements are strict, which makes medical ethical approval challenging

    Supplementation of Facial Fat Grafting to Increase Volume Retention: A Systematic Review

    Get PDF
    BACKGROUND: For decades, facial fat grafting is used in clinical practice for volume restoration. The main challenge of this technique is the variable volume retention. Over the past years, studies reported the addition of supplements to augment the fat graft to increase volume retention. OBJECTIVES: The aim of this systematic review was to investigate which supplements increase volume retention in facial fat grafting as assessed with volumetric outcomes and patient satisfaction. METHODS: Central, MEDLINE, EMBASE, Web of Science Core Collection and Google Scholar were searched until 30th of November 2020. Only studies assessing volume after facial fat grafting with supplementation in human subjects were included. Outcomes of interest were volume or patient satisfaction. Quality of the studies was assessed using the Effective Public Health Practice Project tool. RESULTS: After duplicates were removed 3724 studies were screened by title and abstract. After reading 95 full-text articles, 27 studies were eligible and included for comparison. Supplementation comprised of platelet rich plasma (PRP), platelet rich fibrin, adipose tissue-derived stromal cells or bone marrow-derived stromal cells, cellular or tissue stromal vascular fraction (SVF) or nanofat. In 13 out of 22 studies the supplemented group showed improved volumetric retention and 5 out of 16 studies showed greater satisfaction. The scientific quality of the studies was rated as weak for 20 of 27 studies, moderate for 6 of 27 studies and strong for 1 study. CONCLUSIONS: Our results show that it remains unclear if additives contribute to facial fat graft retention while there is a need to standardize methodology
    corecore