37 research outputs found

    Dataset of ptychographic X-ray computed tomography of inverse opal photonic crystals produced by atomic layer deposition

    Get PDF
    This data article describes the detailed parameters for synthesizing mullite inverse opal photonic crystals via Atomic Layer Deposition (ALD), as well as the detailed image analysis routine used to interpret the data obtained by the measurement of such photonic crystals, before and after the heat treatment, via Ptychographic X-ray Computed Tomography (PXCT). The data presented in this article are related to the research article by Furlan and co-authors entitled "Photonic materials for high-temperature applications: Synthesis and characterization by X-ray ptychographic tomography" (Furlan et al., 2018). The data include detailed information about the ALD super-cycle process to generate the ternary oxides inside a photonic crystal template, the raw data from supporting characterization techniques, as well as the full dataset obtained from PXCT. All the data herein described is publicly available in a Mendeley Data archive "Dataset of synthesis and characterization by PXCT of ALD-based mullite inverse opal photonic crystals" located at https://data.mendeley.com/datasets/zn49dsk7x6/1 for any academic, educational, or research purposes

    In Vitro Generation of Cartilage-Carrier-Constructs on Hydroxylapatite Ceramics with Different Surface Structures

    Get PDF
    Tissue engineering approaches for healing cartilage defects are partly limited by the inability to fix cartilage to bone during implantation. To overcome this problem, cartilage can be - already in vitro - generated on a ceramic carrier which serves as bone substitute. In this study, the influence of a hydroxylapatite carrier and its surface structure on the quality of tissue engineered cartilage was investigated. Application of the carrier reduced significantly biomechanical and biochemical properties of the generated tissue. In addition, slight changes in the quality of the formed matrix, in the adhesive strength between cartilage and biomaterial and in attachment and proliferation of a chondrocyte monolayer could be observed for commercial grade carriers, with respect to modified topographies obtained by smooth grinding/polishing. These first results demonstrated an influence of the carrier and its surface structure, but further research is needed for explaining the described effects and for optimization of cartilage-carrier-constructs

    Investigation of the phase space in lead-free (K x Na1-x )1-y Li y (Nb1-z Ta z )O3 ferroelectric ceramics

    No full text
    A library of ceramic compounds based on the lead-free (KxNa1−x)1−yLiy(Nb1−zTaz)O3 solid solution has been synthesized and characterized using high-throughput experimentation (HTE) method. The phase space previously reported by Saito and Takao has been expanded to x, 0.1, 1.0, y, 0, 0.1, z, 0, 0.2, and new phase boundaries are observed. The relative density values show that with the appropriate sintering temperature, ∌92% of the theoretical density can be reached. The relative permittivity values show that with increasing amount of K+ and Ta5+, the dielectric constant values increase. The effect of density on the dielectric constant values is however minimal. Resistivity values ranging from 109 to 1013 Ω·cm are obtained for the samples. The piezoelectric charge coefficient values for selected compositions show that higher values are obtained close to the phase boundaries rather than away from them. The properties for the ceramic library using the HTE method are generally 15%–20% less than from the conventional method. This method is therefore more suited for screening of sample compositions than for producing samples with high piezoelectric properties.Deutsche Forschungsgemeinschaft (DFG) Grant No. 372/16:1-

    High-temperature stable inverse opal photonic crystals via mullite-sol-gel infiltration of direct photonic crystals

    No full text
    Three-dimensionally ordered macroporous materials for photonic or refractory applications have been developed by an innovative approach based on mullite sol-gel infiltration of direct photonic crystals followed by burn-out and calcination. Direct photonic crystals were obtained using polystyrene spheres templates either by vertical convective self-assembly or by drop casting. The samples were then infiltrated by spin coating with mullite sol-gels prepared with two different compositions (74 wt.% Al 2 O 3 , 26 wt.% SiO 2 and 80 wt.% Al2O 3 , 20 wt.% SiO 2 ). The inverse opal photonic crystals prepared with both sol-gels presented a highly ordered porosity and the high-alumina composition showed stability up to 1500°C. After inversion of the structure (polymeric template burn-out), the high-alumina composition showed roundness of the PS templated pores closer to an ideal sphere (Ø = 0.967) when compared to the low-alumina composition (Ø = 0.954). Although the inverse opal photonic crystals did not present a photonic bandgap, they showed structural stability at high temperatures, which enable their application as refractory materials

    Approximation of mechanical properties of sintered materials with discrete element method

    No full text
    Sintering process is a key step in ceramic processing, which has strong influence on quality of final product. The final shape, microstructure and mechanical properties, e.g. density, heat conductivity, strength and hardness are depending on the sintering process. In order to characterize mechanical properties of sintered materials, in this contribution we present a microscale modelling approach. This approach consists of three different stages: simulation of the sintering process, transition to final structure and modelling of mechanical behaviour of sintered material with discrete element method (DEM). To validate the proposed simulation approach and to investigate products with varied internal structures alumina powder has been experimentally sintered at different temperatures. The comparison has shown that simulation results are in a very good agreement with experimental data and that the novel strategy can be effectively used for modelling of sintering process

    Approximation of mechanical properties of sintered materials with discrete element method

    No full text
    Sintering process is a key step in ceramic processing, which has strong influence on quality of final product. The final shape, microstructure and mechanical properties, e.g. density, heat conductivity, strength and hardness are depending on the sintering process. In order to characterize mechanical properties of sintered materials, in this contribution we present a microscale modelling approach. This approach consists of three different stages: simulation of the sintering process, transition to final structure and modelling of mechanical behaviour of sintered material with discrete element method (DEM). To validate the proposed simulation approach and to investigate products with varied internal structures alumina powder has been experimentally sintered at different temperatures. The comparison has shown that simulation results are in a very good agreement with experimental data and that the novel strategy can be effectively used for modelling of sintering process

    Approximation of mechanical properties of sintered materials with discrete element method

    No full text
    Sintering process is a key step in ceramic processing, which has strong influence on quality of final product. The final shape, microstructure and mechanical properties, e.g. density, heat conductivity, strength and hardness are depending on the sintering process. In order to characterize mechanical properties of sintered materials, in this contribution we present a microscale modelling approach. This approach consists of three different stages: simulation of the sintering process, transition to final structure and modelling of mechanical behaviour of sintered material with discrete element method (DEM). To validate the proposed simulation approach and to investigate products with varied internal structures alumina powder has been experimentally sintered at different temperatures. The comparison has shown that simulation results are in a very good agreement with experimental data and that the novel strategy can be effectively used for modelling of sintering process

    Influence of pores arrangement on stability of photonic structures during sintering

    No full text
    Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number 192346071 – SFB 986 (projects A3 and C5)
    corecore