2 research outputs found

    A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System

    Get PDF
    An intrusion detection system (IDS) plays a critical role in maintaining network security by continuously monitoring network traffic and host systems to detect any potential security breaches or suspicious activities. With the recent surge in cyberattacks, there is a growing need for automated and intelligent IDSs. Many of these systems are designed to learn the normal patterns of network traffic, enabling them to identify any deviations from the norm, which can be indicative of anomalous or malicious behavior. Machine learning methods have proven to be effective in detecting malicious payloads in network traffic. However, the increasing volume of data generated by IDSs poses significant security risks and emphasizes the need for stronger network security measures. The performance of traditional machine learning methods heavily relies on the dataset and its balanced distribution. Unfortunately, many IDS datasets suffer from imbalanced class distributions, which hampers the effectiveness of machine learning techniques and leads to missed detection and false alarms in conventional IDSs. To address this challenge, this paper proposes a novel model-based generative adversarial network (GAN) called TDCGAN, which aims to improve the detection rate of the minority class in imbalanced datasets while maintaining efficiency. The TDCGAN model comprises a generator and three discriminators, with an election layer incorporated at the end of the architecture. This allows for the selection of the optimal outcome from the discriminators’ outputs. The UGR’16 dataset is employed for evaluation and benchmarking purposes. Various machine learning algorithms are used for comparison to demonstrate the efficacy of the proposed TDCGAN model. Experimental results reveal that TDCGAN offers an effective solution for addressing imbalanced intrusion detection and outperforms other traditionally used oversampling techniques. By leveraging the power of GANs and incorporating an election layer, TDCGAN demonstrates superior performance in detecting security threats in imbalanced IDS datasets.PID2020-113462RB-I00, PID2020-115570GB-C22 and PID2020-115570GB-C21 granted by Ministerio Español de Economía y CompetitividadProject TED2021-129938B-I0, granted by Ministerio Español de Ciencia e Innovació

    RAD: Reinforcement Authentication DYMO Protocol for MANET

    Get PDF
    Mobile ad hoc network (MANET) does not have fixed infrastructure or centralized server which manages the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations
    corecore