29 research outputs found

    Key role for VSMCs in vascular remodeling and calcification

    Get PDF
    This research shows that cardiovascular diseases, such as vascular calcification and thrombosis, should be addressed and treated differently. Instead of the regular treatment of symptoms (i.e. lowering blood pressure and cholesterol levels) the underlying cause should be further investigated. This research looked at the effects of the vascular wall in the onset of these diseases. The assumption is that the vascular wall changes prior to the cardiovascular diseases developing. In this research, new models were developed with which we can look at these vascular wall changes before the cardiovascular diseases appear. Clinically this is extremely relevant because the tide can still be turned and it leads to new insights in how these vascular wall changes cause cardiovascular diseases. Financed by the Netherlands Thrombosis Foundation

    The Role of Vascular Smooth Muscle Cells in Arterial Remodeling:Focus on Calcification-Related Processes

    Get PDF
    Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be

    The Maastricht Acquisition Platform for Studying Mechanisms of Cell–Matrix Crosstalk (MAPEX):An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease

    Get PDF
    Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5–5.5 cm or shows a growth rate of &gt;0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of &lt;55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue–cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell–matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.</p

    The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes

    No full text
    Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be

    Development of the BioHybrid Assay: Combining Primary Human Vascular Smooth Muscle Cells and Blood to Measure Vascular Calcification Propensity

    No full text
    Background: Vascular calcification is an active process that increases cardiovascular disease (CVD) risk. There is still no consensus on an appropriate biomarker for vascular calcification. We reasoned that the biomarker for vascular calcification is the collection of all blood components that can be sensed and integrated into a calcification response by human vascular smooth muscle cells (hVSMCs). Methods: We developed a new cell-based high-content assay, the BioHybrid assay, to measure in vitro calcification. The BioHybrid assay was compared with the o-Cresolphthalein assay and the T50 assay. Serum and plasma were derived from different cohort studies including chronic kidney disease (CKD) stages III, IV, V and VD (on dialysis), pseudoxanthoma elasticum (PXE) and other cardiovascular diseases including serum from participants with mild and extensive coronary artery calcification (CAC). hVSMCs were exposed to serum and plasma samples, and in vitro calcification was measured using AlexaFluor®-546 tagged fetuin-A as calcification sensor. Results: The BioHybrid assay measured the kinetics of calcification in contrast to the endpoint o-Cresolphthalein assay. The BioHybrid assay was more sensitive to pick up differences in calcification propensity than the T50 assay as determined by measuring control as well as pre- and post-dialysis serum samples of CKD patients. The BioHybrid response increased with CKD severity. Further, the BioHybrid assay discriminated between calcification propensity of individuals with a high CAC index and individuals with a low CAC index. Patients with PXE had an increased calcification response in the BioHybrid assay as compared to both spouse and control plasma samples. Finally, vitamin K1 supplementation showed lower in vitro calcification, reflecting changes in delta Agatston scores. Lower progression within the BioHybrid and on Agatston scores was accompanied by lower dephosphorylated-uncarboxylated matrix Gla protein levels. Conclusion: The BioHybrid assay is a novel approach to determine the vascular calcification propensity of an individual and thus may add to personalised risk assessment for CVD

    Annexin A5 reduces early plaque formation in ApoE -/- mice

    No full text
    Annexin A5 (AnxA5) exerts anti-inflammatory, anticoagulant and anti-apoptotic effects through its binding to cell surface expressed phosphatidylserine. We previously showed that AnxA5 can stabilize advanced atherosclerotic plaques by reducing macrophage infiltration. We now investigated the effects of AnxA5 administration on the onset of atherosclerosis development. Eight-week-old ApoE-/-mice were fed a western diet while being administered AnxA5 or control (M1234) for a total of 6 weeks. AnxA5 administration reduced plaque size in the aortic root as well as the aortic arch by 36% and 55% respectively. As determined by immunohistochemistry, administration of AnxA5 further stabilized plaque by reducing macrophage content and increasing smooth muscle cell content. Furthermore, the pre-treatment of HUVEC's with AnxA5 reduced monocyte adhesion under flow-conditions. Finally, AnxA5 administration results in a trend to reduced cell death more pronounced in the aortic arch than the aortic root. In conclusion, treatment with AnxA5 before the onset of atherosclerosis reduces plaque formation in a murine model of atherosclerosis in part by reducing apoptotic rates further to its beneficial effect on macrophage infiltration and activation

    The BioHybrid Assay:A Novel Method for Determining Calcification Propensity

    No full text
    Vascular calcification is an active pathological process, characterised by cellular dysregulation and subsequent changes to the extracellular environment. In vivo detection of vascular calcification is only possible late stage via computed tomography, and there is no single biomarker for detecting progression of vascular calcification. There is an unmet clinical need to determine progression of vascular calcification in vulnerable patients. This is especially needed in chronic kidney disease (CKD) patients where there is a correlation of cardiovascular disease with declining renal status. We hypothesised that the entirety of circulating components should be taken into consideration with vessel wall cells to determine real-time vascular calcification development. In this protocol we describe the isolation and characterisation of human primary vascular smooth muscle cells (hpVSMCs), and the addition of human serum or plasma to hpVSMCs in a calcification assay and analysis. The BioHybrid analysis of biological changes to in vitro hpVSMC calcification is reflective of in vivo vascular calcification status. We suggest this analysis can discriminate between CKD patient cohorts and has the potential for wider application for risk factor determination in CKD and the general population

    Microvesicle-mediated tissue regeneration mitigates the effects of cellular ageing

    Get PDF
    Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects

    Calcium Signalling in Heart and Vessels:Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases

    No full text
    Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research
    corecore