193 research outputs found

    Experimental study of three-dimensional turbulence under a free surface

    Full text link
    In many environmental flows, an air-water free surface interacts with a turbulent flow in the water phase. To reproduce this situation, we propose an original experimental setup, which is an evolution of the Randomly Actuated Synthetic Jet Array (RASJA) device used to study turbulence with a low mean flow. By using a central pump connected to jets, we generate a turbulent flow of tunable intensity with good isotropy and horizontal homogeneity. The maximal turbulent Reynolds number of 88008800 is significantly larger than in other systems generating turbulence with low mean flow, including RASJA experiments, for which the flow rate per jet cannot be changed. Using our setup, we characterize the modification of the turbulence under the influence of the free surface, which acts typically for depths smaller than the integral length measured in the bulk. We report that the turbulent fluctuations become strongly anisotropic when approaching the free surface. The vertical velocity fluctuations decrease close to the surface whereas the horizontal ones increase as reported in previous theoretical predictions and numerical observations. We also observe a strong enhancement of the amplitude of the temporal and spatial power spectra of the horizontal velocity at large scales, showing the strengthening of these velocity fluctuations near the free surface

    Role of the basin boundary conditions in gravity wave turbulence

    Get PDF
    Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.Comment: Journal of Fluid Mechanics, Cambridge University Press (CUP), 2015, in press in JF

    Autoantibodies to Endothelial Cell Surface ATP Synthase, the Endogenous Receptor for Hsp60, Might Play a Pathogenic Role in Vasculatides

    Get PDF
    International audienceBACKGROUND: Heat shock protein (hsp) 60 that provides "danger signal" binds to the surface of resting endothelial cells (EC) but its receptor has not yet been characterized. In mitochondria, hsp60 specifically associates with adenosine triphosphate (ATP) synthase. We therefore examined the possible interaction between hsp60 and ATP synthase on EC surface. METHODOLOGY/PRINCIPAL FINDINGS: Using Far Western blot approach, co-immunoprecipitation studies and surface plasmon resonance analyses, we demonstrated that hsp60 binds to the β-subunit of ATP synthase. As a cell surface-expressed molecule, ATP synthase is potentially targeted by anti-EC-antibodies (AECAs) found in the sera of patients suffering vasculitides. Based on enzyme-linked immunosorbent assay and Western blotting techniques with F1-ATP synthase as substrate, we established the presence of anti-ATP synthase antibodies at higher frequency in patients with primary vasculitides (group I) compared with secondary vasculitides (group II). Anti-ATP synthase reactivity from group I patients was restricted to the β-subunit of ATP synthase, whereas those from group II was directed to the α-, β- and γ-subunits. Cell surface ATP synthase regulates intracellular pH (pHi). In low extracellular pH medium, we detected abnormal decreased of EC pHi in the presence of anti-ATP synthase antibodies, irrespective of their fine reactivities. Interestingly, soluble hsp60 abrogated the anti-ATP synthase-induced pHi down-regulation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that ATP synthase is targeted by AECAs on the surface of EC that induce intracellular acidification. Such pathogenic effect in vasculitides can be modulated by hsp60 binding on ATP synthase which preserves ATP synthase activity

    Instability of the origami of a ferrofluid drop in a magnetic field

    Get PDF
    Capillary origami is the wrapping of an usual fluid drop by a planar elastic membrane due to the interplay between capillary and elastic forces. Here, we use a drop of magnetic fluid whose shape is known to strongly depend on an applied magnetic field. We study the quasi-static and dynamical behaviors of such a magnetic capillary origami. We report the observation of an overturning instability that the origami undergoes at a critical magnetic field. This instability is triggered by an interplay between magnetic and gravitational energies in agreement with the theory presented here. Additional effects of elasticity and capillarity on this instability are also discussed.Comment: in press in PRL (2011

    Experimental characterization of mechanical properties of the cement-aggregate interface in concrete

    Get PDF
    International audienceThe microstructure of the Interfacial Transition Zone (ITZ) between the aggregates and the cement paste is characterized by a higher porosity than that of the bulk paste. The particular properties of this zone strongly influence the mechanical behavior of concrete. Microscopic cracks, which develop during subsequent loading, appear either in the matrix (cement paste or mortar) or along the cement-aggregates interface. Cracks could be caused by either tensile, shear strengths or by combinations of both. In this work, the mechanical properties of the cement paste – aggregate sample are experimentally studied. The experimental tests are performed on parallelepipedic samples at classical aggregate scale (one centimeter sections). These samples are composed of limestone aggregates and Portland cement paste, hereafter named ''composite ". The cement paste is prepared with a water/cement ratio of 0.5. The shape of the prepared composites makes them convenient for direct tensile and shear tests. At different stages of hydration, we performed direct tensile and shear tests on the composites by means of specific devices. The same tests were carried out on the cement paste in order to compare with the composite results. The analysis of the experimental results showed that the tensile strength of the cement-aggregate interface was about 30% lower than that of the cement paste tensile strength. Also, the shear strength of the cement-aggregate interface was smaller than the shear strength of the cement paste. In the same way as macroscopic Mohr–Coulomb criterion, we observed an increase of shear strength when normal stress increased. It provides access to a local cohesion (c) and a local friction angle ðUÞ at classical aggregate scale

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
    • …
    corecore