2,303 research outputs found

    The Initial Value Problem Using Metric and Extrinsic Curvature

    Full text link
    The initial value problem is introduced after a thorough review of the essential geometry. The initial value equations are put into elliptic form using both conformal transformations and a treatment of the extrinsic curvature introduced recently. This use of the metric and the extrinsic curvature is manifestly equivalent to the author's conformal thin sandwich formulation. Therefore, the reformulation of the constraints as an elliptic system by use of conformal techniques is complete.Comment: 10 pages, to appear in the Proceedings of the Tenth Marcel Grossmann Meeting on General Relativit

    Fixing Einstein's equations

    Get PDF
    Einstein's equations for general relativity, when viewed as a dynamical system for evolving initial data, have a serious flaw: they cannot be proven to be well-posed (except in special coordinates). That is, they do not produce unique solutions that depend smoothly on the initial data. To remedy this failing, there has been widespread interest recently in reformulating Einstein's theory as a hyperbolic system of differential equations. The physical and geometrical content of the original theory remain unchanged, but dynamical evolution is made sound. Here we present a new hyperbolic formulation in terms of gijg_{ij}, KijK_{ij}, and \bGam_{kij} that is strikingly close to the space-plus-time (``3+1'') form of Einstein's original equations. Indeed, the familiarity of its constituents make the existence of this formulation all the more unexpected. This is the most economical first-order symmetrizable hyperbolic formulation presently known to us that has only physical characteristic speeds, either zero or the speed of light, for all (non-matter) variables. This system clarifies the relationships between Einstein's original equations and the Einstein-Ricci and Frittelli-Reula hyperbolic formulations of general relativity and establishes links to other hyperbolic formulations.Comment: 8 pages, revte

    New Minimal Distortion Shift Gauge

    Full text link
    Based on the recent understanding of the role of the densitized lapse function in Einstein's equations and of the proper way to pose the thin sandwich problem, a slight readjustment of the minimal distortion shift gauge in the 3+1 approach to the dynamics of general relativity allows this shift vector to serve as the vector potential for the longitudinal part of the extrinsic curvature tensor in the new approach to the initial value problem, thus extending the initial value decomposition of gravitational variables to play a role in the evolution as well. The new shift vector globally minimizes the changes in the conformal 3-metric with respect to the spacetime measure rather than the spatial measure on the time coordinate hypersurfaces, as the old shift vector did.Comment: 5 page ReVTeX4 twocolumn latex file, no figures; slight revision: last sentence of section 2 deleted and replaced, citations reordered, additonal paragraph added to introduction with short explanation of the initial value problem and its thin sandwich variation, Yvonne Choquet-Bruhat reference added and acknowledgment expanded to include he

    Path Integral Over Black Hole Fluctuations

    Full text link
    Evaluating a functional integral exactly over a subset of metrics that represent the quantum fluctuations of the horizon of a black hole, we obtain a Schroedinger equation in null coordinate time for the key component of the metric. The equation yields a current that preserves probability if we use the most natural choice of functional measure. This establishes the existence of blurred horizons and a thermal atmosphere. It has been argued previously that the existence of a thermal atmosphere is a direct concomitant of the thermal radiation of black holes when the temperature of the hole is greater than that of its larger environment, which we take as zero.Comment: 5 pages, added a couple of clarification
    • …
    corecore