302 research outputs found
Neighborhood institutions like coffee shops and bars can have a significant positive or negative impact on local crime rates
Why is there more crime in some neighborhoods than others? While many investigations into the causes of crime tend to focus on individual motivation, new research from James Wo looks at the role of local institutions, such as shops, bars and nonprofits. He finds that these often relatively mundane institutions have meaningful consequences for neighborhood crime levels. While bars and liquor stores have an adverse effect on violent crime (but not for property crime), âthirdâ places such as local coffee shops and cafes have crime reducing effects on both violent and property crime. He argues that city planners, politicians, and residents should take these factors into account when considering where new organizations and businesses are established
Racially diverse neighborhoods in diverse areas are linked to lower crime rates
In new research, Young-An Kim and James C. Wo look at the implications of increasing racial and ethnic diversity in Americaâs communities on crime. Using evidence from Southern California, they tested the effects of racial diversity on neighborhood crime rates, finding that there were fewer violent and property crimes in neighborhood blocks which were more diverse, and especially those in more diverse areas. They attribute this to the greater opportunities created by diverse communities to overcome bias and create social ties and trust across different groups
Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial
Long-term antibiotic therapy is used to prevent exacerbations of COPD but there is uncertainty over whether this reduces airway bacteria. The optimum antibiotic choice remains unknown. We conducted an exploratory trial in stable patients with COPD comparing three antibiotic regimens against placebo
Fecal bile acids, fecal short-chain fatty acids, and the intestinal microbiota in patients with irritable bowel syndrome (IBS) and control volunteers
OBJECTIVES/SPECIFIC AIMS: Objectives and goals of this study will be to: (1) compare fecal microbiota and fecal organic acids in irritable bowel syndrome (IBS) patients and controls and (2) investigate the association between colonic transit and fecal microbiota in IBS patients and controls. METHODS/STUDY POPULATION: We propose an investigation of fecal organic acids, colonic transit and fecal microbiota in 36 IBS patients and 18 healthy controls. The target population will be adults ages 18â65 years meeting Rome IV criteria for IBS (both diarrhea- and constipation-predominant, IBS-D and IBS-C) and asymptomatic controls. Exclusion criteria are: (a) history of microscopic colitis, inflammatory bowel disease, celiac disease, visceral cancer, chronic infectious disease, immunodeficiency, uncontrolled thyroid disease, liver disease, or elevated AST/ALT>2.0Ă the upper limit of normal, (b) prior radiation therapy of the abdomen or abdominal surgeries with the exception of appendectomy or cholecystectomy >6 months before study initiation, (c) ingestion of prescription, over the counter, or herbal medications affecting gastrointestinal transit or study interpretation within 6 months of study initiation for controls or within 2 days before study initiation for IBS patients, (d) pregnant females, (e) antibiotic usage within 3 months before study participation, (f) prebiotic or probiotic usage within the 2 weeks before study initiation, (g) tobacco users. Primary outcomes will be fecal bile acid excretion and profile, short-chain fatty acid excretion and profile, colonic transit, and fecal microbiota. Secondary outcomes will be stool characteristics based on responses to validated bowel diaries. Stool samples will be collected from participants during the last 2 days of a 4-day 100 g fat diet and split into 3 samples for fecal microbiota, SCFA, and bile acid analysis and frozen. Frozen aliquots will be shipped to the Metabolite Profiling Facility at Purdue University and the Mayo Clinic Department of Laboratory Medicine and Pathology for SCFA and bile acid measurements, respectively. Analysis of fecal microbiota will be performed in the research laboratory of Dr David Nelson in collaboration with bioinformatics expertise affiliated with the Nelson lab. Colonic transit time will be measured with the previously validated method using radio-opaque markers. Generalized linear models will be used as the analysis framework for comparing study endpoints among groups. RESULTS/ANTICIPATED RESULTS: This study seeks to examine the innovative concept that specific microbial signatures are associated with increased fecal excretion of organic acids to provide unique insights on a potential mechanistic link between altered intraluminal organic acids and fecal microbiota. DISCUSSION/SIGNIFICANCE OF IMPACT: Results may lead to development of targets for novel therapies and diagnostic biomarkers for IBS, emphasizing the role of the fecal metabolome
Narrow-band imaging versus white light for the detection of proximal colon serrated lesions: a randomized, controlled trial
Background
The value of narrow-band imaging (NBI) for detecting serrated lesions is unknown.
Objective
To assess NBI for the detection of proximal colon serrated lesions.
Design
Randomized, controlled trial.
Setting
Two academic hospital outpatient units.
Patients
Eight hundred outpatients 50 years of age and older with intact colons undergoing routine screening, surveillance, or diagnostic examinations.
Interventions
Randomization to colon inspection in NBI versus white-light colonoscopy.
Main Outcome Measurements
The number of serrated lesions (sessile serrated polyps plus hyperplastic polyps) proximal to the sigmoid colon.
Results
The mean inspection times for the whole colon and proximal colon were the same for the NBI and white-light groups. There were 204 proximal colon lesions in the NBI group and 158 in the white light group (P = .085). Detection of conventional adenomas was comparable in the 2 groups.
Limitations
Lack of blinding, endoscopic estimation of polyp location.
Conclusion
NBI may increase the detection of proximal colon serrated lesions, but the result in this trial did not reach significance. Additional study of this issue is warranted. (Clinical trial registration number: NCT01572428.
Does the history of food energy units suggest a solution to "Calorie confusion"?
The Calorie (kcal) of present U.S. food labels is similar to the original French definition of 1825. The original published source (now available on the internet) defined the Calorie as the quantity of heat needed to raise the temperature of 1 kg of water from 0 to 1°C. The Calorie originated in studies concerning fuel efficiency for the steam engine and had entered dictionaries by 1840. It was the only energy unit in English dictionaries available to W.O. Atwater in 1887 for his popular articles on food and tables of food composition. Therefore, the Calorie became the preferred unit of potential energy in nutrition science and dietetics, but was displaced when the joule, g-calorie and kcal were introduced. This article will explain the context in which Nicolas Clément-Desormes defined the original Calorie and the depth of his collaboration with Sadi Carnot. It will review the history of other energy units and show how the original Calorie was usurped during the period of international standardization. As a result, no form of the Calorie is recognized as an SI unit. It is untenable to continue to use the same word for different thermal units (g-calorie and kg-calorie) and to use different words for the same unit (Calorie and kcal). The only valid use of the Calorie is in common speech and public nutrition education. To avoid ongoing confusion, scientists should complete the transition to the joule and cease using kcal in any context
Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer
postprin
A systematic review of the evidence for single stage and two stage revision of infected knee replacement
BACKGROUND:
Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates.
METHODS:
A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded.
RESULTS:
63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies.
CONCLUSIONS:
Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority
Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis
RNA editing of kainate receptor subunits at the Q/R site determines their susceptibility to inhibition by cis-unsaturated fatty acids as well as block by cytoplasmic polyamines. Channels comprised of unedited (Q) subunits are strongly blocked by polyamines, but insensitive to fatty acids, such as arachidonic acid (AA) and docosahexaenoic acid (DHA), whereas homomeric edited (R) channels resist polyamine block but are inhibited by AA and DHA. In the present study, we have analyzed fatty acid modulation of whole-cell currents mediated by homomeric recombinant GluK2 (formerly GluR6) channels with individual residues in the pore-loop, M1 and M3 transmembrane helices replaced by scanning mutagenesis. Our results define three abutting surfaces along the M1, M2, and M3 helices where gain-of-function substitutions render GluK2(Q) channels susceptible to fatty acid inhibition. In addition, we identify four locations in the M3 helix (F611, L614, S618, and T621) at the level of the central cavity where Arg substitution increases relative permeability to chloride and eliminates polyamine block. Remarkably, for two of these positions, L614R and S618R, exposure to fatty acids reduces the apparent chloride permeability and potentiates whole-cell currents âŒ5 and 2.5-fold, respectively. Together, our results suggest that AA and DHA alter the orientation of M3 in the open state, depending on contacts at the interface between M1, M2, and M3. Moreover, our results demonstrate the importance of side chains within the central cavity in determining ionic selectivity and block by cytoplasmic polyamines despite the inverted orientation of GluK2 as compared with potassium channels and other pore-loop family members
- âŠ