25 research outputs found

    The Maia detector array and x-ray fluorescence imaging system: Locating rare precious metal phases in complex samples

    Get PDF
    X-ray fluorescence images acquired using the Maia large solid-angle detector array and integrated real-time processor on the X-ray Fluorescence Microscopy (XFM) beamline at the Australian Synchrotron capture fine detail in complex natural samples with images beyond 100M pixels. Quantitative methods permit real-time display of deconvoluted element images and for the acquisition of large area XFM images and 3D datasets for fluorescence tomography and chemical state (XANES) imaging. This paper outlines the Maia system and analytical methods and describes the use of the large detector array, with a wide range of X-ray take-off angles, to provide sensitivity to the depth of features, which is used to provide an imaging depth contrast and to determine the depth of rare precious metal particles in complex geological samples. © 2013 SPIE

    Reaction mechanism for the replacement of calcite by dolomite and siderite: Implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation

    Get PDF
    Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction textures at hydrothermal conditions. In doing so, we describe the mechanisms by which carbonate phases replace one another, and the implications for the evolution of geochemistry, rock microstructures and porosity. The sample from the 1.95 Moz Junction gold deposit, Western Australia, contains calcite derived from carbonation of a metamorphic amphibole—plagioclase assemblage that has further altered to siderite and dolomite. The calcite is porous and contains iron-rich calcite blebs interpreted to have resulted from fluid-mediated replacement of compositionally heterogeneous amphiboles. The siderite is polycrystalline but nucleates topotactically on the calcite. As a result, the boundaries between adjacent grains are low-angle boundaries (<10°), which are geometrically similar to those formed by crystal–plastic deformation and recovery. Growth zoning within individual siderite grains shows that the low-angle boundaries are growth features and not due to deformation. Low-angle boundaries develop due to the propagation of defects at grain faces and zone boundaries and by impingement of grains that nucleated with small misorientations relative to each other during grain growth.The cores of siderite grains are aligned with the twin planes in the parent calcite crystal showing that the reactant Fe entered the crystal along the twin boundaries. Dolomite grains, many of which appear to in-fill space generated by the siderite replacement, also show alignment of cores along the calcite twin planes, suggesting that they did not grow into space but replaced the calcite. Where dolomite is seen directly replacing calcite, it nucleates on the Fe-rich calcite due to the increased compatibility of the Fe-bearing calcite lattice relative to the pure calcite. Both reactions are interpreted as fluid-mediated replacement reactions which use the crystallography and elemental chemistry of the calcite. Experiments of fluid-mediated replacement reactions show that they proceed much faster than diffusion-based reactions. This is important when considering the rates of reactions relative to fluid flow in mineralising systems

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    The role of metamorphic fluids in the formation of ore deposits

    No full text

    Geochemical modelling of a Zn–Pb skarn: constraints from\ud LA–ICP–MS analysis of fluid inclusions

    No full text
    The Bismark deposit (northern Chihuahua, Mexico) is one of several base metal-rich high-temperature, carbonate-replacement deposits hosted in northern Mexico. Previous fluid inclusion studies based on microthermometry and PIXE have shown that the Zn-rich, Pb-poor Bismark deposit formed from a moderate salinity magmatic fluid [Baker, T. and Lang, J.R., 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico. Mineralium Deposita 38(4), 474–495; Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120]. The exact precipitation mechanisms are unclear and may have due to cooling, salinity decrease and wall rock reaction. Furthermore, PIXE data suggested that Pb and Zn concentrations were comparable and inconsistent with the Zn-rich nature of the ore. However, Pb was commonly below the limit of detection for PIXE and the data presented by Baker et al. [Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120] are regarded as the maximum concentrations of Pb in the fluid. In this study new LA ICP MS analysis was carried out on the same fluid inclusion population to compare with the PIXE data in order to constrain the uncertainty related to the Pb data and the new results are used to model possible ore deposition mechanisms. The new laser ablation data reveal overall lower concentrations of Pb in the ore fluid (average value ~ 285 ppm) than previously indicated by PIXE analysis (average value ~ 713 ppm). Chemical modelling using the new laser ablation data tested the following ore deposition processes: 1) cooling; 2) fluid–rock reaction at constant temperature; 3) cooling and simultaneous fluid–rock interaction. Modelling results show that the gangue and ore minerals observed at Bismark are best reproduced by fluid–rock interaction and simultaneous cooling. Results from the simulations strongly indicate that ore deposition was mainly driven by a pH increase due to the neutralization of the acidic ore fluid (pH = 3.9) as the result of the reaction with the limestone. Modelling results also suggest that the deposit likely formed under cooling conditions, but do not support the hypothesis of a temperature decrease as the principal ore-forming process

    Gold precipitation: the Big Picture from micro-chemical processes

    No full text
    Samples of gold-bearing laminated veins from the Sunrise Dam Gold Mine (Western Australia) have been investigated in detail using a combination of advanced imaging and analysis techniques (electron optics, proton-induced x-ray emission, laser ablation). This analysis reveals a very complex chemical and mechanical history recorded at the micro-scale which illustrates the complexity of simple vein systems and the nature of gold precipitation. The laminations represent micro-breccias within a pre-existing quartz-carbonate vein. The gold is hosted by coarse pyrite but is intimately associated with the precipitation of apatite, dolomite, tourmaline-muscovite, rutile and zircon. The chemistry of the apatite, in-situ Sr isotope analysis, the mineralogy of the breccia and the coarse pyrite gold-host indicates that two fluids were present in the system. An oxidised, CO2- rich (water-poor), S-poor fluid with a strong mantle affinity and a water-bearing, reduced S, As, Fe-bearing fluid. The mixing of these two fluids during the cracking of a strong pre-existing quartz vein in a weak sheared host rock led to gold localisation and precipitation

    Using geochemical proxies to model nuggety gold deposits: an example from Sunrise Dam, Western Australia

    No full text
    Gold distribution in vein-hosted hydrothermal ore deposits is commonly nuggety (i.e. occurs as very localised concentrations of gold). In these cases samples for gold assay from diamond drill core may be too small to model the underlying heterogeneity of gold distribution and result in poorly constrained ore body models and underestimated gold resources. Hence, it is common practice to use more spatially continuous proxies for mineralisation to help define the boundaries of mineralised regions. We present a method for automating the use of geochemical proxies for nuggety gold ore bodies.\ud \ud Sunrise Dam Gold Mine, in Western Australia, is a world-class gold deposit with a very high nugget effect. Multi-element geochemical data has been collected at this site in order to improve prediction of mineralised regions. Suitable proxy elements have been selected from this data set, in particular, those that are spatially related to gold mineralisation but do not display nuggety distribution, such as Sb, Rb and Cr.\ud \ud We applied a probabilistic approach to the problem of quantifying the relationship between gold assay values and geochemical elements. It is shown that a kernel density estimator and Bayes conditional probability can provide an effective method for calculating the probability of a sample having elevated gold content and that this measure will be more spatially continuous than gold assay values if the appropriate geochemical proxies are selected. Using conditional probability and suitable cut-off values, we reclassified approximately 27% of samples as mineralised which returned low Au assay results. When plotted on drill holes conditional probability values provided a much more spatially continuous guide to mineralised regions than Au assay values alone

    Gold precipitation: the Big Picture from micro-chemical\ud processes

    No full text
    Samples of gold-bearing laminated veins from the Sunrise Dam Gold Mine (Western Australia) have been investigated in detail using a combination of advanced imaging and analysis techniques (electron optics, proton-induced x-ray emission, laser ablation). This analysis reveals a very complex chemical and mechanical history recorded at the micro-scale which illustrates the complexity of simple vein systems and the nature of gold precipitation. The laminations represent\ud micro-breccias within a pre-existing quartz-carbonate vein. The gold is hosted by coarse pyrite but is intimately\ud associated with the precipitation of apatite, dolomite,\ud tourmaline-muscovite, rutile and zircon. The chemistry of\ud the apatite, in-situ Sr isotope analysis, the mineralogy of\ud the breccia and the coarse pyrite gold-host indicates that\ud two fluids were present in the system. An oxidised, CO2-\ud rich (water-poor), S-poor fluid with a strong mantle affinity and a water-bearing, reduced S, As, Fe-bearing fluid. The mixing of these two fluids during the cracking of a strong pre-existing quartz vein in a weak sheared host\ud rock led to gold localisation and precipitation

    Numerical models of extensional deformation, heat transfer, and fluid flows across basement-cover interfaces during basin-related mineralization

    No full text
    Fluid circulation within low-permeability basement rocks has been proposed to occur beneath many sediment-hosted mineral deposits, in some cases contributing substantial metals or sulfur to the deposits in overlying cover sequences. However, mechanisms proposed for fluid transport and mass transfer within and through basement rocks are diverse, some models appealing to thermal circulation but others appealing more to deformation- or topography-driven flow. We address some of these issues here by a series of numerical models designed to compare and then couple thermally and mechanically driven fluid flow (and incorporate temperature-dependent fluid properties), starting with generic problems and then using a simulation of coupled deformation, heat transfer, and fluid flow that may be applicable to the formation of Mount Isa-style Pb-Zn ores and other extension-related basinal deposits. Results from deformation-only models show that downward penetration of near-surface fluids into relatively low permeability basement rocks may occur along fault zones at high strain rates during extension, because local deformation rates may exceed the capacity for fluid to move through the basement rocks due to their low permeability, leading to periods of underpressure. For our thermal fluid-flow models, in the absence of deformation and with elevated basal heat flows, large differences in basement and cover permeability tend to restrict thermal convection to the permeable units. Downflow into low-permeability basement may occur by a reduction of the permeability of cover sequences, because larger convection cells are possible as permeability approaches common, optimal values throughout the rock mass. The normal reduction in porosity and permeability of cover sequences with burial may thus lead to progressively deepening convection cells and an enhanced potential for extraction of components from basement rocks. Long-lived, stable convection is generated with ≤2 order of magnitude permeability difference between basement and cover. Such convection has the potential to lead to near-surface mineralization (e.g., sediment-hosted syngenetic or diagenetic deposits), particularly if an initial overpressure stimulates convection cells toward upflow along basin-bounding faults. These models also serve to indicate the inadequacy of models that do not incorporate thermal dependencies of fluid viscosity and density, because the upward fluid velocity generated by buoyancy is of the same order of magnitude as the downward fluid velocity generated by extension-related underpressure in models that do not incorporate these properties. In numerical models of coupled deformation, heat transfer and fluid flow in which high basal heat flow is coupled with extensional deformation, the effects of the deformation dominate flow regimes, rather than the thermal structure. A model with initial heating and fluid flow established large convection cells with basement fluid circulation, prior to deformation being incorporated. The convection cells are effectively destroyed by extension at geologically reasonable strain rates around 10–14s–1, with surface fluids driven downward and meeting remnants of the decaying convection deep in the system. This simulation provides a possible solution for mixing of near-surface and deep fluids in unconformity-related U deposits and Olympic Dam-style iron oxide Cu-Au deposits. Geological models for shale-hosted base metal deposits (e.g., Mount Isa Zn-Pb) appeal to transitions from active rifting to blanketing by mineralized sag-phase shales, requiring reduction or cessation of extension with time. We simulate this here by stopping the deformation component of the coupled model and allowing the heating and fluid-flow parts to continue. Initial or periodic fluid overpressures (140% of hydrostatic) applied at the base of our coupled numerical models during extension (rift phase) cause initial upflow along faults and sufficient heat advection to generate steep near surface thermal gradients. When deformation ceases, convection progressively deepens with time, but upflow continues along faults, producing perfect conditions for exhalation of fluids that have circulated through basement. From all of the coupled models, we infer that active extension or extensional reactivation of basin-bounding faults is generally destructive with respect to potential fluid upflow and generation of near-surface deposits. Exhalative or other near-surface ores are likely to form when extension ceases and the thermal structure becomes the driver of fluid flow
    corecore