15,193 research outputs found

    A computational study of high-speed microdroplet impact onto a smooth solid surface

    Get PDF
    Numerical solutions of high-speed microdroplet impact onto a smooth solid surface are computed, using the interFoam VoF solver of the OpenFOAM CFD package. Toward the solid surface, the liquid microdroplet is moving with an impinging gas flow, simulating the situation of ink droplets being deposited onto substrate with a collimated mist jet in the Optomec Aerosol Jet printing process. The computed values of maximum spread factor, for the range of parameters of practical interest to Aerosol Jet printing, were found in very good agreement with some of the correlation formulas proposed by previous authors in the literature. Combining formulas selected from different authors with appropriate modifications yields a maximum spread factor formula that can be used for first-order evaluations of deposited in droplet size during the Aerosol Jet technology development. The computational results also illustrate droplet impact dynamics with lamella shape evolution throughout the spreading, receding-relaxation, and wetting equilibrium phases, consistent with that observed and described by many previous authors. This suggests a scale-invariant nature of the basic droplet impact behavior such that experiments with larger droplets at the same nondimensional parameter values may be considered for studying microdroplet impact dynamics. Significant free surface oscillations can be observed when the droplet viscosity is relatively low. The border line between periodic free surface oscillations and aperiodic creeping to capillary equilibrium free surface shape appears at the value of Ohnesorge number around 0.25. Droplet bouncing after receding is prompted with large contact angles at solid surface (as consistent with findings reported in the literature), but can be suppressed by increasing the droplet viscosity

    Disorder Correlation Frequency Controlled Diffusion in the Jaynes-Cummings-Hubbard Model

    Full text link
    We investigate time-dependent stochastic disorder in the one-dimensional Jaynes-Cummings-Hubbard model and show that it gives rise to diffusive behaviour. We find that disorder correlation frequency is effective in controlling the level of diffusivity. In the defectless system the mean squared displacement (MSD), which is a measure of the diffusivity, increases with increasing disorder frequency. Contrastingly, when static defects are present the MSD increases with disorder frequency only at lower frequencies; at higher frequencies, increasing disorder frequency actually reduces the MSD

    All Hail The Power Of Jesus\u27 Name | 12-50830

    Get PDF
    All Hail The Power Of Jesus\u27 Name, for SATB Voices with Organ and Optional Brass Quartet Part Number: 12-50830 Previous Part Number: CH025 Price: $1.75 Voicing: SATB Lyrics By: Edward Perronet (1779) Stanza 4, John Rippon (1787) Music By: Oliver Holden (1793) Arranged By: James Q. Mulholland with opt. Brass Partshttps://digitalcommons.butler.edu/jca_scores/1085/thumbnail.jp

    Spin gravitational resonance and graviton detection

    Full text link
    We develop a gravitational analogue of spin magnetic resonance, called spin gravitational resonance, whereby a gravitational wave interacts with a magnetic field to produce a spin transition. In particular, an external magnetic field separates the energy spin states of a spin-1/2 particle, and the presence of the gravitational wave produces a perturbation in the components of the magnetic field orthogonal to the gravitational wave propagation. In this framework we test Dyson's conjecture that individual gravitons cannot be detected. Although we find no fundamental laws preventing single gravitons being detected with spin gravitational resonance, we show that it cannot be used in practice, in support of Dyson's conjecture.Comment: 6 pages, 1 figur

    Foldy-Wouthuysen transformation of the generalised Dirac Hamiltonian in a gravitational-wave background

    Full text link
    Goncalves et al. derived a non-relativistic limit of the generalised Dirac Hamiltonian in the presence of a gravitational wave, using the exact Foldy-Wouthuysen transformation. This gave rise to the intriguing notion that spin-precession may occur even in the absence of a magnetic field. We argue that this effect is not physical as it is the result of a gauge-variant term that was an artefact of a flawed application of the exact Foldy-Wouthuysen transformation. In this paper we derive the correct non-relativistic limit of the generalised Dirac Hamiltonian in the presence of a gravitational wave, using both the exact and standard Foldy-Wouthuysen transformation. We show that both transformations consistently produce a Hamiltonian where all terms are gauge-invariant. Unfortunately however, we also show that this means the novel spin-precession effect does not exist.Comment: 4 page

    Gravitational Casimir effect

    Full text link
    We derive the gravitonic Casimir effect with non-idealised boundary conditions. This allows the quantification of the gravitonic contribution to the Casimir effect from real bodies. We quantify the meagreness of the gravitonic Casimir effect in ordinary matter. We also quantify the enhanced effect produced by the speculated Heisenberg-Couloumb (H-C) effect in superconductors, thereby providing a test for the validity of the H-C theory, and consequently the existence of gravitons.Comment: 6 pages, 2 figure

    Bayesian decision support for complex systems with many distributed experts

    Get PDF
    Complex decision support systems often consist of component modules which, encoding the judgements of panels of domain experts, describe a particular sub-domain of the overall system. Ideally these modules need to be pasted together to provide a comprehensive picture of the whole process. The challenge of building such an integrated system is that, whilst the overall qualitative features are common knowledge to all, the explicit forecasts and their associated uncertainties are only expressed individually by each panel, resulting from its own analysis. The structure of the integrated system therefore needs to facilitate the coherent piecing together of these separate evaluations. If such a system is not available there is a serious danger that this might drive decision makers to incoherent and so indefensible policy choices. In this paper we develop a graphically based framework which embeds a set of conditions, consisting of the agreement usually made in practice of certain probability and utility models, that, if satisfied in a given context, are sufficient to ensure the composite system is truly coherent. Furthermore, we develop new message passing algorithms entailing the transmission of expected utility scores between the panels, that enable the uncertainties within each module to be fully accounted for in the evaluation of the available alternatives in these composite systems
    • …
    corecore