23 research outputs found

    Water Footprint Differences of Producing Cultivars of Selected Crops in New Zealand

    Get PDF
    Water footprint (WF) is a measure of the amount of water used to produce goods and services. It is a very important concept on indicating how much water can be consumed to complete a process of growing or processing a product at a particular location. However, paucity of water footprint information in countries facing increased competition for water resources between industries limits market access and profit optimization. Water footprint differences of producing selected cultivars of potato, oca and pumpkin squash were determined under irrigation and rain-fed regimes. All crop husbandry practices were followed in potato, oca (3.3 plants m−2) and pumpkin squash (2.2 plants m−2). Water footprint was determined as the ratio of volume of evapotranspiration for irrigated and rain-fed crops plus grey water to total yield. The consumptive water use for the rain-fed crop was 75, 65 and 69% of the irrigated oca, potato and pumpkin squash, respectively, with high water consumption in heritage cultivars. The water footprint was low in pumpkin squash and highest in oca, while potato cultivars were intermediate. Irrigation reduced water footprint especially in crops more responsive to irrigation. Farmers should focus on improving the harvest index and irrigation to reduce water footprint

    Best-of-Three Contests: Experimental Evidence

    Get PDF
    We conduct an experimental analysis of a best-of-three Tullock contest. Intermediate prizes lead to higher efforts, while increasing the role of luck (as opposed to effort) leads to lower efforts. Both intermediate prizes and luck reduce the probability of contest ending in two rounds. The patterns of players‟ efforts and the probability that a contest ends in two rounds is consistent with „strategic momentum‟, i.e. momentum generated due to strategic incentives inherent in the contest. We do not find evidence for „psychological momentum‟, i.e. momentum which emerges when winning affects players‟ confidence. Similar to previous studies of contests, we find significantly higher efforts than predicted and strong heterogeneity in effort between subjects

    Dictator Games: A Meta Study

    Full text link
    Over the last 25 years, more than a hundred dictator game experiments have been published. This meta study summarizes the evidence. Exploiting the fact that most experiments had to fix parameters they did not intend to test, the meta study explores a rich set of control variables for multivariate analysis. It shows that Tobit models (assuming that dictators would even want to take money) and hurdle models (assuming that the decision to give a positive amount is separate from the choice of amount, conditional on giving) outperform mere meta-regression and OLS

    Changes to the composition of scale insect species (Coccomorpha: Eriococcidae) on New Zealand manuka (Leptospermum scoparium; Myrtaceae) in the last seventy years

    Full text link
    The perception of Leptospermum scoparium (mānuka) in New Zealand has changed from a weed to a valued shrub over the last half century due to the economic benefits of mānuka honey. The scale insect Acanthococcus orariensis (Hoy) (Hemiptera: Eriococcidae), an accidental control agent of L. scoparium that caused the mānuka blight mass dieback in the 1940s, initially was common, but declined once the entomogenous fungus Angatia thwaitesii (Petch) Arx (Fungi: Myriangiaceae) appeared. Subsequently, Acanthococcus campbelli (Hoy) and Acanthococcus leptospermi (Maskell) appear to have replaced Ac. orariensis in the last few decades, but there is limited knowledge on their current distribution. The distribution of Acanthococcus species on L. scoparium was determined at 28 sites throughout New Zealand. The most widespread species was Ac. leptospermi, which was found at 23 sites, whereas Ac. campbelli was found at 13 sites, and Ac. orariensis at just two sites. It appears that Ac. leptospermi is now the most common Acanthococcus species on New Zealand Leptospermum, and the blight caused by Ac. orariensis has not returned

    Bioeconomic Modelling to Assess the Impacts of Using Native Shrubs on the Marginal Portions of the Sheep and Beef Hill Country Farms in New Zealand

    Full text link
    New Zealand hill country sheep and beef farms contain land of various slope classes. The steepest slopes have the lowest pasture productivity and livestock carrying capacity and are the most vulnerable to soil mass movements. A potential management option for these areas of a farm is the planting of native shrubs which are browsable and provide erosion control, biodiversity, and a source of carbon credits. A bioeconomic whole farm model was developed by adding a native shrub sub-model to an existing hill country sheep and beef enterprise model to assess the impacts on feed supply, flock dynamics, and farm economics of converting 10% (56.4 hectares) of the entire farm, focusing on the steep slope areas, to native shrubs over a 50-year period. Two native shrub planting rates of 10% and 20% per year of the allocated area were compared to the status quo of no (0%) native shrub plantings. Mean annual feed supply dropped by 6.6% and 7.1% causing a reduction in flock size by 10.9% and 11.6% for the 10% and 20% planting rates, respectively, relative to 0% native shrub over the 50 years. Native shrub expenses exceeded carbon income for both planting rates and, together with reduced income from sheep flock, resulted in lower mean annual discounted total sheep enterprise cash operating surplus for the 10% (New Zealand Dollar (NZD) 20,522) and 20% (NZD 19,532) planting scenarios compared to 0% native shrubs (NZD 22,270). All planting scenarios had positive Net Present Value (NPV) and was highest for the 0% native shrubs compared to planting rates. Break-even carbon price was higher than the modelled carbon price (NZD 32/ New Zealand Emission Unit (NZU)) for both planting rates. Combined, this data indicates planting native shrubs on 10% of the farm at the modelled planting rates and carbon price would result in a reduction in farm sheep enterprise income. It can be concluded from the study that a higher carbon price above the break-even can make native shrubs attractive in the farming system

    Methylobacterium, a major component of the culturable bacterial endophyte community of wild Brassica seed

    Full text link
    Background Plants are commonly colonized by a wide diversity of microbial species and the relationships created can range from mutualistic through to parasitic. Microorganisms that typically form symptomless associations with internal plant tissues are termed endophytes. Endophytes associate with most plant species found in natural and managed ecosystems. They are extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Plant domestication has reduced endophyte diversity and therefore the wild relatives of many crop species remain untapped reservoirs of beneficial microbes. Brassica species display immense diversity and consequently provide the greatest assortment of products used by humans from a single plant genus important for agriculture, horticulture, bioremediation, medicine, soil conditioners, composting crops, and in the production of edible and industrial oils. Many endophytes are horizontally transmitted, but some can colonize the plant’s reproductive tissues, and this gives these symbionts an efficient mechanism of propagation via plant seed (termed vertical transmission). Methods This study surveyed 83 wild and landrace Brassica accessions composed of 14 different species with a worldwide distribution for seed-originating bacterial endophytes. Seed was stringently disinfected, sown within sterile tissue culture pots within a sterile environment and incubated. After approximately 1-month, direct isolation techniques were used to recover bacterial endophytes from roots and shoots of symptomless plants. Bacteria were identified based on the PCR amplification of partial 16S rDNA gene sequences and annotated using the BLASTn program against the NCBI rRNA database. A diversity index was used as a quantitative measure to reflect how many different bacterial species there were in the seed-originating microbial community of the Brassica accessions sampled. Results Bacterial endophytes were recovered from the majority of the Brassica accessions screened. 16S rDNA gene sequencing identified 19 different bacterial species belonging to three phyla, namely Actinobacteria, Firmicutes and Proteobacteria with the most frequently isolated species being Methylobacterium fujisawaense, Stenotrophomonas rhizophila and Pseudomonas lactis. Methylobacterium was the dominant genus composing 56% of the culturable isolated bacterial community and was common in 77% of accessions possessing culturable bacterial endophytes. Two selected isolates of Methylobacterium significantly promoted plant growth when inoculated into a cultivar of oilseed rape and inhibited the growth of the pathogen Leptosphaeria maculans in dual culture. This is the first report that investigates the seed-originating endophytic microorganisms of wild Brassica species and highlights the Brassica microbiome as a resource for plant growth promoting bacteria and biological control agents

    In Vitro Fermentation of Browsable Native Shrubs in New Zealand

    Full text link
    Information on the nutritive value and in vitro fermentation characteristics of native shrubs in New Zealand is scant. This is despite their potential as alternatives to exotic trees and shrubs for supplementary fodder, and their mitigation of greenhouse gases and soil erosion on hill-country sheep and beef farms. The objectives of this study were to measure the in vitro fermentation gas production, predict the parameters of the in vitro fermentation kinetics, and estimate the in vitro fermentation of volatile fatty acids (VFA), microbial biomass (MBM), and greenhouse gases of four native shrubs (Coprosma robusta, Griselinia littoralis, Hoheria populnea, and Pittosporum crassifolium) and an exotic fodder tree species, Salix schwerinii. The total in vitro gas production was higher (p S. schwerinii. A prediction using the single-pool model resulted in biologically incorrect negative in vitro total gas production from the immediately soluble fraction of the native shrubs. However, the dual pool model better predicted the in vitro total gas production and was in alignment with the measured in vitro fermentation end products. The in vitro VFA and greenhouse gas production from the fermentation of leaf and stem material was higher (p p S. schwerinii. The lower in vitro total gas production, VFA, and greenhouse gases production and higher MBM of the S. schwerinii may be explained by the presence of condensed tannins (CT), although this was not measured and requires further study. In conclusion, the results from this study suggest that when consumed by ruminant livestock, browsable native shrubs can provide adequate energy and microbial protein, and that greenhouse-gas production from these species is within the ranges reported for typical New Zealand pastures

    Effects of Sheep Grazing Systems on Water Quality with a Focus on Nitrate Leaching

    Full text link
    This article reviews the literature on nitrate leaching under sheep grazing systems and focuses on identifying future research needs. Urinary nitrogen (N) is an important source of the nitrate leached from pastoral agriculture. Urinary N excretion can be measured or simulated using models and has been well characterised for dairy systems. It is difficult to continuously monitor the urinary N excretion of sheep under field conditions; consequently, measurements of N excretion in sheep urine are limited. Urination events by sheep vary greatly in volume (0.5 L to 6.9 L), concentration (3 to 13.7 g N/L), and frequency (8 to 23 events/day); this variation results in a corresponding variation in N loading rates in urine patches. The amount of nitrate leached under pastures grazed by sheep has typically varied between 1 and 50 kg N/ha/year, but rates as high as 300 kg N/ha/year have been reported. The quantity of nitrate leached under sheep depends on the season, climate, quantity and timing of drainage, the interaction between forage production and stocking rate, fertiliser applied, N fixation by legumes, forage type, and grazing management. The majority of studies examining nitrate leaching under sheep grazing systems are more than 20 years old; so, there is little recent information on nitrate leaching under modern pasture-based sheep production systems. Further research is required to quantify nitrate leaching levels under current sheep farming practices, to understand the impacts of this leaching on water quality, and to help identify effective strategies to reduce the transfer of N from grazed paddocks to receiving water bodies. This additional information will help provide information for decision support tools, including models and management practices, to help sheep farmers minimise their impact on the aquatic environment
    corecore