1,691 research outputs found

    Optimum optical designs for diffraction-limited terahertz spectroscopy and imaging systems using off-axis parabolic mirrors

    Full text link
    Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations that make achieving diffraction-limited performance a challenge, and which lowers the peak electric field strength in the focal plane. Here we quantify the impact of geometric aberrations on the performance of the most widely-used spectrometer designs, by investigating whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.Comment: 10 pages and 6 figure

    Tracking a hysteretic and disorder-broadened phase transition via the electromagnon response in improper ferroelectrics

    Get PDF
    We demonstrate that electromagnons can be used to directly probe the nature of a phase transition between magnetically ordered phases in an improper ferroelectric. The antiferromagnetic/paraelectric to antiferromagnetic/ferroelectric phase transition in Cu1-xZnxO (x=0, 0.05) alloys was tracked via the electromagnon response using terahertz time-domain spectroscopy, on heating and cooling through the phase transition. The transition was found to exhibit thermal hysteresis, confirming its first-order nature, and to broaden under the influence of spin-disorder upon Zn substitution. The energy of the electromagnon increases upon alloying, as a result of the non-magnetic ions modifying the magnetic interactions that give rise to the multiferroic phase and electromagnons. We describe our findings in the context of recent theoretical work that examined improper ferroelectricity and electromagnons in CuO from phenomenological and first-principles approaches

    Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams

    Get PDF
    A multi-pixel photoconductive emitter is reported that generates THz beams with either azimuthal, radial or linear polarization states. Switching between the different polarization states was purely electrical, via the bias voltage applied, circumventing the need for mechanical polarization optics or different THz emitters to change the polarization. Dipole array modelling was performed to validate emitter array designs, and to explore their optimal bias configuration, while spatially-resolved electro-optic detection of the generated beams confirmed that cylindrical-vector beams were produced. We further demonstrate that the spatial beam profile was optimized by adjusting the bias level on particular pixels, improving the polarization purity of the beam

    Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    Get PDF
    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps

    Landau polaritons in highly non-parabolic 2D gases in the ultra-strong coupling regime

    Full text link
    We probe ultra-strong light matter coupling between metallic terahertz metasurfaces and Landau-level transitions in high mobility 2D electron and hole gases. We utilize heavy-hole cyclotron resonances in strained Ge and electron cyclotron resonances in InSb quantum wells, both within highly non-parabolic bands, and compare our results to well known parabolic AlGaAs/GaAs quantum well (QW) systems. Tuning the coupling strength of the system by two methods, lithographically and by optical pumping, we observe a novel behavior clearly deviating from the standard Hopfield model previously verified in cavity quantum electrodynamics: an opening of a lower polaritonic gap

    Zigzag HgTe nanowires modify the electron–phonon interaction in chirality-refined single-walled carbon nanotubes

    Get PDF
    Atomically thin nanowires (NWs) can be synthesized inside single-walled carbon nanotubes (SWCNTs) and feature unique crystal structures. Here we show that HgTe nanowires formed inside small-diameter (<1 nm) SWCNTs can advantageously alter the optical and electronic properties of the SWCNTs. Metallic purification of the filled SWCNTs was achieved by a gel column chromatography method, leading to an efficient extraction of the semiconducting and metallic portions with known chiralities. Electron microscopic imaging revealed that zigzag HgTe chains were the dominant NW geometry in both the semiconducting and metallic species. Equilibrium-state and ultrafast spectroscopy demonstrated that the coupled electron–phonon system was modified by the encapsulated HgTe NWs, in a way that varied with the chirality. For semiconducting SWCNTs with HgTe NWs, Auger relaxation processes were suppressed, leading to enhanced photoluminescence emission. In contrast, HgTe NWs enhanced the Auger relaxation rate of metallic SWCNTs and created faster phonon relaxation, providing experimental evidence that encapsulated atomic chains can suppress hot carrier effects and therefore boost electronic transport

    Recreational marathon running does not cause exercise-induced left ventricular hypertrabeculation.

    Get PDF
    BACKGROUND: Marathon running in novices represents a natural experiment of short-term cardiovascular remodeling in response to running training. We examine whether this stimulus can produce exercise-induced left ventricular (LV) trabeculation. METHODS: Sixty-eight novice marathon runners aged 29.5 ± 3.2 years had indices of LV trabeculation measured by echocardiography and cardiac magnetic resonance imaging 6 months before and 2 weeks after the 2016 London Marathon race, in a prospective longitudinal study. RESULTS: After 17 weeks unsupervised marathon training, indices of LV trabeculation were essentially unchanged. Despite satisfactory inter-observer agreement in most methods of trabeculation measurement, criteria defining abnormally hypertrabeculated cases were discordant with each other. LV hypertrabeculation was a frequent finding in young, healthy individuals with no subject demonstrating clear evidence of a cardiomyopathy. CONCLUSION: Training for a first marathon does not induce LV trabeculation. It remains unclear whether prolonged, high-dose exercise can create de novo trabeculation or expose concealed trabeculation. Applying cut off values from published LV noncompaction cardiomyopathy criteria to young, healthy individuals risks over-diagnosis

    Design and fabrication of 3-D printed conductive polymer structures for THz polarization control

    Get PDF
    In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly
    • …
    corecore