7 research outputs found
Supplemental Space Heating using a Solar Energy-Intensifier-Thermal Energy Storage System
Many variations of solar concentrators, solar collectors, and solar thermal energy storage units are currently being investigated for use in agricultural space heating applications. However, limited data are available on the use of solar concentrators and thermal storage systems for specific agricultural applications in most climatic areas. Since useful alternate energy sources are of such great importance, research was conducted with the following objectives: 1. Evaluate the thermal efficiency and energy collecting capabilities of a solar energy-intensifier under actual climatic conditions. 2. Study the temperature and energy storage characteristics of a native stone thermal energy storage unit used with a solar energy-intensifier. 3. Evaluate the performance of a solar energy-intensifier-thermal energy storage system used for space heating during winter climatic conditions
Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover
► Organosolv lignin extracted from three feedstocks was analyzed. ► Lignin origin influences its properties. ► Examined lignins were found low in contaminants. ► Examined lignins were found highly phenolic and applicable in vanillin production.
Lignin extracted from prairie cordgrass, switchgrass, and corn stover (using ethyl acetate–ethanol–water organosolv pretreatment) was analyzed and characterized using several methods. These methods included analysis of purity (by determination of Klason lignin, carbohydrate, and ash contents), solubility (with several organic solvents), phenolic group analysis (ultraviolet ionization difference spectra, and nitrobenzene oxidation), and general functional group analysis (by 1H NMR). Results showed that all the examined lignin samples were relatively pure (contained over 50% Klason lignin, less than 5% carbohydrate contamination, and less than 3% ash), but switchgrass-derived lignin was observed to be the purest. All the lignins were found to contain high amounts of phenolic groups, while switchgrass-derived lignin was the most phenolic, according to the ionization difference spectra. Nitrobenzene oxidation revealed that all the lignin samples contained available guaiacyl units in high amounts
Catalyzed modified clean fractionation of switchgrass
Switchgrass was used as a lignocellulosic feedstock for second generation ethanol production, after pretreatment using sulfuric acid-catalyzed modified clean fractionation based on NREL's (National Renewable Energy Laboratory) original procedure. Optimization of temperature, catalyst concentration and solvent composition was performed using Response Surface Methodology, and 59.03 ± 7.01% lignin recovery, 84.85 ± 1.34% glucose, and 44.11 ± 3.44% aqueous fraction xylose yields were obtained at 140.00 °C, 0.46% w/w catalyst concentration, 36.71% w/w ethyl acetate concentration, and 25.00% w/w ethanol concentration. The cellulose fraction did not inhibit the fermentation performance of Saccharomyces cerevisiae and resulted in an ethanol yield of 89.60 ± 2.1%
Phosphorus Sorption and Availability fromBiochars and Soil/Biochar Mixtures
In an energy‐limited world, biomass may be converted to energy products through pyrolysis. A byproduct of this process is biochar. A better understanding is needed of the sorption characteristics of biochars, which can influence the availability of plant essential nutrients and potential water contaminants such as phosphorus (P) in soil. Knowledge of P retention and release mechanisms when applying carbon‐rich amendments such as biochar to soil is needed. The objectives of this study were to quantify the P sorption and availability from biochars produced from the fast pyrolysis of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.). We determined the impact of biochar application to soils with different chemical characteristics on P sorption and availability. Sorption of P by biochars and soil–biochar mixtures was studied by fitting the equilibrium solution and sorbed concentrations of P using Freundlich and Langmuir isotherms. Biochar produced from Ponderosa pine wood residue had very different chemical characteristics than corn stover and switchgrass. Corn stover biochar had the highest P sorption (in average 79% of the initial solution P concentration) followed by switchgrass biochar (in average 76%) and Ponderosa pine wood residue biochar (in average 31%). Ponderosa pine wood residue biochar had higher bicarbonate extractable (available) P (in average 43%) followed by switchgrass biochar (33% of sorbed P) and corn stover biochar (25% of sorbed P). The incorporation of biochars to acidic soil at 40 g/kg (4%) increased the equilibrium solution P concentration (reduced the sorption) and increased available sorbed P. In calcareous soil, application of alkaline biochars (corn stover and switchgrass biochars) significantly increased the sorption of P and decreased the availability of sorbed P. Biochar effects on soil P was aligned with their chemical composition and surface characteristics