1,333 research outputs found

    Trends in U.S. Venture Capital Investments Related to Energy: 1980 through the Third Quarter of 2010

    Get PDF
    This report documents trends in U.S. venture capital investments over the period 1980 through the third quarter of calendar year 2010 (2010 Q1+Q2+Q3). Particular attention is given to U.S. venture capital investments in the energy/industrial sector over the period 1980-2010 Q1+Q2+Q3 as well as in the more recently created cross-cutting category of CleanTech over the period 1995-2010 Q1+Q2+Q3. During the early 1980s, U.S. venture capital investments in the energy/industrial sector accounted for more than 20% of all venture capital investments. However subsequent periods of low energy prices, the deregulation of large aspects of the energy industry, and the emergence of fast growing new industries like computers (both hardware and software), biotechnology and the Internet quickly reduced the priority accorded to energy/industrial investments. To wit, venture capital investments related to the energy/industrial sector accounted for only 1% of the 132billion(inreal2010US132 billion (in real 2010 US) invested in 2000 by the U.S. venture capital community. The significant increase in the real price of oil that began in 2003-2004 correlates with renewed interest and increased investment by the venture capital community in energy/industrial investment opportunities. Venture capital investments for 2009 for the energy/industrial sector accounted for 2.4billionorslightlymorethan132.4 billion or slightly more than 13% of all venture capital invested that year. The total venture capital invested in energy/industrial during the first three quarters of 2010 is close to 2.4 billion accounting for slightly less than 15% of all venture capital investments during the first three quarters of 2010. In 2009, the aggregate amount invested in CleanTech was 2.1billion(112.1 billion (11% of the total US venture capital invested in that lean year) and for the first three quarters of 2010 US venture capital investments in CleanTech have already exceeded 2.8 billion (18% of all US venture capital investments made during the first three quarters of 2010). Between 2004 and 2009, U.S. venture capital investments in energy/industrial as well as CleanTech have more than quadrupled in real terms

    Trends in U.S. Venture Capital Investments Related to Energy: 1980 through the Second Quarter of 2010

    Get PDF
    This report documents trends in U.S. venture capital investments over the period 1980 through the second quarter of calendar year 2010 (2010Q1+Q2). Particular attention is given to U.S. venture capital investments in the energy/industrial sector over the period 1980-2010Q1+Q2 as well as in the more recently created cross-cutting category of CleanTech over the period 1995-2010Q1+Q2. During the early 1980s, U.S. venture capital investments in the energy/industrial sector accounted for more than 20% of all venture capital investments. However subsequent periods of low energy prices, the deregulation of large aspects of the energy industry, and the emergence of fast growing new industries like computers (both hardware and software), biotechnology and the Internet quickly reduced the priority accorded to energy/industrial investments. To wit, venture capital investments related to the energy/industrial sector accounted for only 1% of the 119billiondollarsinvestedin2000bytheU.S.venturecapitalcommunity.Thesignificantincreaseintherealpriceofoilthatbeganin20032004correlateswithrenewedinterestandincreasedinvestmentbytheventurecapitalcommunityinenergy/industrialinvestmentopportunities.Venturecapitalinvestmentsfor2009fortheenergy/industrialsectoraccountedfor119 billion dollars invested in 2000 by the U.S. venture capital community. The significant increase in the real price of oil that began in 2003-2004 correlates with renewed interest and increased investment by the venture capital community in energy/industrial investment opportunities. Venture capital investments for 2009 for the energy/industrial sector accounted for 2.1 billion or slightly more than 13% of all venture capital invested that year. The total venture capital invested in energy/industrial during the first two quarters of 2010 is close to 1.8billionaccountingfor171.8 billion accounting for 17% of all venture capital investments during the first two quarters of 2010. In 2009, the aggregate amount invested in CleanTech was 1.8 billion (30% of the total US venture capital invested in that lean year) and for the first two quarters of 2010 US venture capital investments in CleanTech have already exceeded $1.9 billion (19% of all US venture capital investments made during the first half of 2010). Between 2004 and 2009, U.S. venture capital investments in energy/industrial as well as CleanTech have more than quadrupled in real terms

    A quantitative comparison of the cost of employing EOR-coupled CCS supplemented with secondary DSF storage for two large CO2 point sources

    Get PDF
    AbstractThis paper explores the impact of the temporally dynamic demand for CO2 for CCS-coupled EOR by evaluating the variable demand for new (i.e., non-recycled) anthropogenic CO2 within EOR projects and the extent to which EOR-coupled CCS is compatible with the need for baseload CO2 storage options for large anthropogenic point sources. A profile of CO2 demand over an assumed EOR project lifetime is applied across two different storage scenarios to illustrate the differences in cost associated with different EOR-coupled CCS configurations. The first scenario pairs a single EOR field with a DSF used to store any CO2 that is not used to increase oil recovery in the EOR field; the second scenario is designed to minimize storage in the DSF and maximize lower-cost EOR-based storage by bringing multiple EOR projects online over time as the previous project’s CO2 demand declines, making the source’s CO2 available for a subsequent project. Each scenario is evaluated for two facilities, emitting 3 and 6 MtCO2/y. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.The research reported here suggests that the cost of implementing a CCS-coupled EOR project will be more than is typically assumed; in many cases a positive price on CO2 emitted to the atmosphere will be required to motivate deployment of these CO2-based EOR projects, except in the most idealized cases. The reasons for this conclusion are twofold. First, the costs of capitalizing, operating and monitoring a secondary DSF to provide backup storage for CO2 not demanded by the EOR operation can cut sharply into EOR revenues. Second, except in cases where a single firm figures both the CO2 source emissions and the associated EOR recovery on the same balance sheet, the oil production company is not likely to share a significant portion of revenues from the EOR field with the CO2 source. Thus, while EOR-coupled CCS may offer attractive early opportunities, these opportunities are likely only available to a small fraction of the CO2 source fleet in the U.S

    Explicitly Accounting for Protected Lands within the GCAM 3.0

    Get PDF
    The Global Change Assessment Model Version 3.0 defines three different levels of “Protected Lands” within the agricultural and landuse component. These three different scenarios effectively cordon off 3.5% (5.0 million km2) of the Earth’s terrestrial lands in the de minimus Protected Land Scenario, 5.0% (7.20 million km2) in the Core Protected Land Scenario, and 8.2% (11.8 million km2) in the Expanded Protected Land Scenario. None of these scenarios represents the “right” level of Protected Lands for the planet today or tomorrow. Rather, the goal is to create a range of scenarios that can be used in modeling human responses to climate change and the impact those would have on managed and unmanaged terrestrial lands. These scenarios harness the wealth of information in the United Nations Environment Programme World Conservation Monitoring Centre’s World Database on Protected Areas and its categories of explicit degrees of protection

    Microbial water quality: Voltammetric detection of coliforms based on riboflavin–ferrocyanide redox couples

    Get PDF
    The ability to screen water for the presence of faecal contamination is a pressing need for rural communities dependent upon local purification systems. While there are a multitude of coliform detection assays based on the activity of β-galactosidase, this report details the adaptation of a voltammetric pH sensing strategy which could offer rapid analysis. The approach exploits the bacterial metabolism of lactose via pyruvate to lactate with the subsequent decrease in pH measured by examining the peak separation of a riboflavin (sensing) – ferrocyanide (reference) couple. Disposable carbon fibre electrodes were used as in situ sensors in Escherichia coli cultures (103–107 cfu/mL) with detection times of 4 h enabling confirmation of coliform activity. The bacterial compatibility of the riboflavin–ferrocyanide system in combination with the simplicity of the detection methodology, stand in marked contrast to many existing coliform assays and could open new avenues through which voltammetric pH sensing could be employed. Keywords: Galactosidase, pH, Riboflavin, Coliform, Water quality, Senso
    corecore