476 research outputs found

    How Subjective Is the Subject?

    Get PDF
    This article re-examines the issue of grammatical relations in Mandarin Chinese in light of the results of recent large-scale typological research on grammatical relations (henceforth GRs) worldwide. Specifically, it discusses three syntactic operations and constructions that are cross-linguistically relevant to the definition of grammatical relations, namely relativisation, reflexivisation, and quantifier float. The study adopts a strictly language-internal typological approach and avails itself of natural linguistic data or sentences sanity-checked by native speakers. The aim of this paper is twofold: first, it explores the hypothesis that, in line with various other languages, GRs in Mandarin Chinese are construction-specific. Second, it proposes an alternative approach capable of explaining the conflicting evidence often pointed out in the literature on GRs and subjecthood in Mandarin Chinese

    Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies.

    Get PDF
    SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. We used prospective longitudinal quantitative reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-2020 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. According to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5, 23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95% CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test within 2 days after an initial positive PCR test substantially improves certainty about a patient's infection stage. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. These findings indicate that SARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patient's progress through infection stages. Frequent, rapid-turnaround testing is needed to effectively screen individuals before they become infectious

    Polymers imprinted with three REG1B peptides for electrochemical determination of Regenerating Protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma

    Get PDF
    Three peptides (each containing 13–18 amino acids) were synthesized and used as templates for molecular imprinting and epitope recognition of the Regenerating Protein 1B (REG1B), which is one of the urinary biomarkers for pancreatic ductal adenocarcinoma (PDAC). Poly(ethylene-co-vinyl alcohol)s were employed as the host for molecular imprinting of the peptides. Following their preparation, the molecularly imprinted polymers (MIP) were examined by cyclic voltammetry. The electrochemical responses of a screen-printed gold substrate coated with the MIP were measured at a working voltage of 300 mV (vs. Ag/AgCl); the entire protein and the peptides gave similar responses at concentrations of <1.0 pg⋅mL−1, with detection limits as low as 0.1 pg⋅mL−1. Urine samples from healthy and PDAC patients were then analyzed by using this modified gold electrode, and the results are in agreement with data obtained with ELISA

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis Independent of Chronic Liver Injury

    Get PDF
    Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV (“preS2 mutant”) that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged—2-year-old—mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines—expressing either mutant or wildtype HBV—therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC

    Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases

    Get PDF
    Neuroinflammation is a process characterised by drastic changes in microglial morphology and by marked upregulation of the 18-kDa translocator protein (TSPO) on the mitochondria. The continual increase in incidence of neuroinflammation and neurodegenerative diseases poses a major health issue in many countries, requiring more innovative diagnostic and monitoring tools. TSPO expression may constitute a biomarker for brain inflammation that could be monitored by using TSPO tracers as neuroimaging agents. From medical imaging perspectives, this review focuses on the current concepts related to the TSPO, and discusses briefly on the status of its PET imaging related to neuroinflammation and neurodegenerative diseases in humans

    Proapoptotic genes BAX and CD40L are predictors of survival in transitional cell carcinoma of the bladder

    Get PDF
    The purpose of the study was to investigate the effects of expression of a range of genes involved in apoptosis on outcome in bladder cancer. Immunohistochemistry was used to examine expression of BCL2, BAX, P53, CD40 and CD40L in archival tissues of patients included in various treatment trials for transitional cell carcinoma (TCC) of the bladder. Data were collected on 94 patients who first presented with either invasive or superficial bladder cancer. Median follow-up for alive patients was 83 months (m) (range 12-195 m). Median survival was 80 m (95% CI=56-128 m). Median survivals for the various markers were as follows: BAX-positive patients 110 m vs BAX-negative patients 18 m (P=0.0002); CD40L-positive patients 95 m vs CD40L-negative patients 45 m (P=0.04); BCL2-positive patients 44 m and BCL2-negative patients 74 m, (P=0.64); CD40-positive patients 110 m and CD40 negative patients 45 m (P=0.12); and P53 positive patients 80 m and P53 negative patients 45 m (P=0.58). In conclusion, it was seen that overexpressions of BAX and CD40L are prognostic of better survival in TCC of the bladder. Our results also raise the possibility of the future development of CD40- and CD40 ligand-based immunotherapy for bladder cancer. This study links proapoptotic and antiapoptotic markers to overall survival

    Structural Elucidation and Functional Characterization of the Hyaloperonospora arabidopsidis Effector Protein ATR13

    Get PDF
    The oomycete Hyaloperonospora arabidopsidis (Hpa) is the causal agent of downy mildew on the model plant Arabidopsis thaliana and has been adapted as a model system to investigate pathogen virulence strategies and plant disease resistance mechanisms. Recognition of Hpa infection occurs when plant resistance proteins (R-genes) detect the presence or activity of pathogen-derived protein effectors delivered to the plant host. This study examines the Hpa effector ATR13 Emco5 and its recognition by RPP13-Nd, the cognate R-gene that triggers programmed cell death (HR) in the presence of recognized ATR13 variants. Herein, we use NMR to solve the backbone structure of ATR13 Emco5, revealing both a helical domain and a disordered internal loop. Additionally, we use site-directed and random mutagenesis to identify several amino acid residues involved in the recognition response conferred by RPP13-Nd. Using our structure as a scaffold, we map these residues to one of two surface-exposed patches of residues under diversifying selection. Exploring possible roles of the disordered region within the ATR13 structure, we perform domain swapping experiments and identify a peptide sequence involved in nucleolar localization. We conclude that ATR13 is a highly dynamic protein with no clear structural homologues that contains two surface-exposed patches of polymorphism, only one of which is involved in RPP13-Nd recognition specificity
    corecore