81 research outputs found
Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective
Any account of âwhat is special about the human brainâ (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a âphylogenetic trendâ associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a ânonverbal matrixâ (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the âfirst wordâ (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the ârenaissanceâ of an ancient organizational principle and, hence, may represent an example of âevolutionary tinkeringâ (Jacob 1977)
Recommended from our members
Identifying predictors of translocation success in rare plant species
The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success
Sociophonetic variation in a long-term language contact situation: /l/-darkening in Welsh-English bilingual speech
This study investigates /l/-darkening in the Welsh and English speech of bilinguals in North Wales. Although it is claimed that /l/ is dark in all syllable positions in northern varieties of both languages, there have been no quantitative investigations of this feature which consider cross-linguistic phonetic differences, the differing nature of language contact between North East and North West Wales, and differences in the way both languages are acquired by speakers. The dataset of 32 Welsh-English bilinguals, aged 16-18, was stratified by speaker sex, home language, and area. Tokens of /l/ in word-initial onset and word-final coda positions were analysed acoustically. The results show cross-linguistic differences in onset position and that such differences were found to be greater in the speech of female participants and those from North West Wales. Differences were also found between Welsh-dominant and English-dominant communities. These results are discussed with reference to the influence of extra-linguistic factors on speech production and the possible social meaning associated with dark /l/
A Multi-Element Detector System for Intelligent Imaging: I-ImaS
I-ImaS is a European project aiming to produce new, intelligent x-ray imaging systems using novel APS sensors to create optimal diagnostic images. Initial systems concentrate on mammography and encephalography. Later development will yield systems for other types of radiography such as industrial QA and homeland security.
The I-ImaS system intelligence, due to APS technology and FPGAs, allows real-time analysis of data during image acquisition, giving the capability to build a truly adaptive imaging system with the potential to create images with maximum diagnostic information within given dose constraints.
A companion paper deals with the DAQ system and preliminary characterization. This paper considers the laboratory x-ray characterization of the detector elements of the I-ImaS system. The characterization of the sensors when tiled to form a strip detector will be discussed, along with the appropriate correction techniques formulated to take into account the misalignments between individual sensors within the array.
Preliminary results show that the detectors have sufficient performance to be used successfully in the initial mammographic and encephalographic I-ImaS systems under construction and this paper will further discuss the testing of these systems and the iterative processes used for intelligence upgrade in order to obtain the optimal algorithms and setting
- âŠ