575 research outputs found

    Formation and maturation of the native cerebral collateral circulation

    Get PDF
    The native (pre-existing) collateral circulation minimizes tissue injury if obstructive vascular disease develops. Evidence suggests large differences in collateral extent exist among healthy individuals, presumably from as-yet unknown genetic and/or environmental factors. Little is known regarding when or how native collaterals form—information needed to identify these factors. We examined collateral development between the middle and anterior cerebral artery trees in BALB/c and C57BL/6 mouse embryos—strains with marked differences in adult collateral density and diameter (85% fewer, 50% smaller in BALB/c). The circulation was dilated, fixed and stained. By E15.5, a “primary collateral plexus” was beginning to form in both strains. By E18.5, plexus vessel number peaked, but was 60% less and diameter smaller in BALB/c (P<0.001). Earlier time-points were examined to determine if these differences correlated with differences in patterning of the general circulation. At ~E9.0, the primary capillary plexus was similar between strains, but by E12.5 branching was less and diameter larger in BALB/c (P<0.05). Between E12.5–E18.5—during pial artery tree development—small differences in tree size, branch number and distance between branches did not correlate with the large difference in collaterogenesis. Pruning of nascent collaterals between P1–P21 was comparable in both strains, yielding the adult density, but diameter and tortuosity increased less in BALB/c. Pericyte recruitment to nascent collaterals was comparable, despite lower VEGF-A and PDGF-B expression in BALB/c mice. These findings demonstrate that collaterals form late during vascular development and undergo postnatal maturation, and that differences in genetic background have dramatic effects on these processes

    De-novo collateral formation following acute myocardial infarction: Dependence on CCR2+ bone marrow cells

    Get PDF
    Wide variation exists in the extent (number and diameter) of native pre-existing collaterals in tissues of different strains of mice, with supportive indirect evidence recently appearing for humans. This variation is a major determinant of the wide variation in severity of tissue injury in occlusive vascular disease. Whether such genetic-dependent variation also exists in the heart is unknown because no model exists for study of mouse coronary collaterals. Also owing to methodological limitations, it is not known if ischemia can induce new coronary collaterals to form (“neo-collaterals”) versus remodeling of pre-existing ones. The present study sought to develop a model to study coronary collaterals in mice, determine whether neo-collateral formation occurs, and investigate the responsible mechanisms. Four strains with known rank-ordered differences in collateral extent in brain and skeletal muscle were studied: C57BLKS>C57BL/6>A/J>BALB/c. Unexpectedly, these and 5 additional strains lacked native coronary collaterals. However after ligation, neo-collaterals formed rapidly within 1-to-2 days, reaching their maximum extent in ≤ 7 days. Rank-order for neo-collateral formation differed from the above: C57BL/6>BALB/c>C57BLKS>A/J. Collateral network conductance, infarct volume−1, and contractile function followed this same rank-order. Neo-collateral formation and collateral conductance were reduced and infarct volume increased in MCP1−/− and CCR2−/− mice. Bone-marrow transplant rescued collateral formation in CCR2−/− mice. Involvement of fractalkine→CX3CR1 signaling and endothelial cell proliferation were also identified. This study introduces a model for investigating the coronary collateral circulation in mice, demonstrates that neocollaterals form rapidly after coronary occlusion, and finds that MCP→CCR2-mediated recruitment of myeloid cells is required for this process

    Endothelial Nitric Oxide Synthase Deficiency Causes Collateral Vessel Rarefaction and Impairs Activation of a Cell Cycle Gene Network During Arteriogenesis

    Get PDF
    The collateral circulation is tissue- and life-saving in obstructive arterial disease. Disappointing outcomes in clinical trials aimed at augmenting collateral growth highlight the need for greater understanding of collateral biology

    Tumor growth and angiogenesis is impaired in CIB1 knockout mice

    Get PDF
    Abstract Background Pathological angiogenesis contributes to various ocular, malignant, and inflammatory disorders, emphasizing the need to understand this process more precisely on a molecular level. Previously we found that CIB1, a 22 kDa regulatory protein, plays a critical role in endothelial cell function, angiogenic growth factor-mediated cellular functions, PAK1 activation, MMP-2 expression, and in vivo ischemia-induced angiogenesis. Since pathological angiogenesis is highly dependent on many of these same processes, we hypothesized that CIB1 may also regulate tumor-induced angiogenesis. Methods To test this hypothesis, we allografted either murine B16 melanoma or Lewis lung carcinoma cells into WT and CIB1-KO mice, and monitored tumor growth, morphology, histology, and intra-tumoral microvessel density. Results Allografted melanoma tumors that developed in CIB1-KO mice were smaller in volume, had a distinct necrotic appearance, and had significantly less intra-tumoral microvessel density. Similarly, allografted Lewis lung carcinoma tumors in CIB1-KO mice were smaller in volume and mass, and appeared to have decreased perfusion. Intra-tumoral hemorrhage, necrosis, and perivascular fibrosis were also increased in tumors that developed in CIB1-KO mice. Conclusions These findings suggest that, in addition to its other functions, CIB1 plays a critical role in facilitating tumor growth and tumor-induced angiogenesis

    Vascular Endothelial Growth Factor-A Specifies Formation of Native Collaterals and Regulates Collateral Growth in Ischemia

    Get PDF
    The density of native (pre-existing) collaterals and their capacity to enlarge into large conduit arteries in ischemia (arteriogenesis) are major determinants of the severity of tissue injury in occlusive disease. Mechanisms directing arteriogenesis remain unclear. Moreover, nothing is known about how native collaterals form in healthy tissue. Evidence suggests VEGF, which is important in embryonic vascular patterning and ischemic angiogenesis, may contribute to native collateral formation and arteriogenesis. Therefore, we examined mice heterozygous for VEGF receptor-1 (VEGFR-1+/-), VEGF receptor-2 (VEGFR-2+/-), and over-expressing (VEGFhi/+) and under-expressing VEGF-A (VEGFlo/+). Recovery from hindlimb ischemia was followed for 21 days after femoral artery ligation. All statements below are p<0.05. Compared to wild-type mice, VEGFR-2+/- showed similar: ischemic scores, recovery of hindlimb perfusion, peri-collateral leukocytes, collateral enlargement and angiogenesis. In contrast, VEGFR-1+/- showed impaired: perfusion recovery, peri-collateral leukocytes and collateral enlargement, worse ischemic scores, and comparable angiogenesis. Compared to wild-type mice, VEGFlo/+ had 2-fold lower perfusion immediately after ligation (suggesting fewer native collaterals which was confirmed by angiography) and blunted recovery of perfusion. VEGFhi/+ mice had 3-fold greater perfusion immediately after ligation, more native collaterals, and improved recovery of perfusion. These differences were confirmed in the cerebral pial cortical circulation where, compared to VEGFhi/+ mice, VEGFlo/+ formed fewer collaterals during the perinatal period when adult density was established, and had 2-fold larger infarctions after middle cerebral artery ligation. Our findings indicate VEGF and VEGFR-1 are determinants of arteriogenesis. Moreover, we describe the first signaling molecule, VEGF-A, that specifies formation of native collaterals in healthy tissues

    A method for evaluating the murine pulmonary vasculature using micro-computed tomography

    Get PDF
    AbstractBackgroundSignificant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning.MethodsMice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-Îźm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation.ResultsRobust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity.ConclusionsThese methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature

    Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity

    Get PDF
    The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine if differences in genetic background in mice result in variation in branch-patterning of the retinal arterial circulation, and if these differences predict strain-dependent differences in pial collateral extent and severity of ischemic stroke. Retinal patterning metrics, collateral extent, and infarct volume were obtained for 10 strains known to differ widely in collateral extent. Multivariate regression was conducted and model performance assessed using K-fold cross-validation. Twenty-one metrics varied with strain (p<0.01). Ten metrics (eg, bifurcation angle, lacunarity, optimality) predicted collateral number and diameter across 7 regression models, with the best model closely predicting (p<0.0001) number (± 1.2-3.4 collaterals, K-fold R2=0.83-0.98), diameter (± 1.2-1.9μm, R2=0.73-0.88) and infarct volume (± 5.1 mm3, R2=0.85-0.87). These metrics obtained for the middle cerebral artery tree in a subset of the above strains also predicted (p<0.0001) collateral number and diameter and diameter, although with less strength (K-fold R2=0.61-0.78) and 0.60-0.86, respectively). Thus, differences in arterial branch-patterning in the retina and the MCA trees are specified by genetic background and predict variation in collateral extent and stroke severity. If also true in human retina, and since genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar “retinal predictor index” could serve as a non-or minimally invasive biomarker for collateral extent in brain and other tissues. This could aid prediction of severity of tissue injury in the event of an occlusive event or development of obstructive disease and in patient stratification for treatment options and clinical studies

    Variants of Rab GTPase–Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke

    Get PDF
    The extent (number and diameter) of collateral vessels varies widely and is a major determinant, along with arteriogenesis (collateral remodeling), of variation in severity of tissue injury following large artery occlusion. Differences in genetic background underlie the majority of the variation in collateral extent in mice, through alterations in collaterogenesis (embryonic collateral formation). In brain and other tissues, ~80% of the variation in collateral extent among different mouse strains has been linked to a region on chromosome 7. We recently used congenic (CNG) fine-mapping of C57BL/6 (B6, high extent) and BALB/cBy (BC, low extent) mice to narrow the region to a 737 Kb locus, Dce1. Herein, we report the causal gene
    • …
    corecore