48 research outputs found

    Identification of diagnostic upper gastrointestinal cancer tissue type‑specific urinary biomarkers

    Get PDF
    Several potential urinary biomarkers exhibiting an association with upper gastrointestinal tumour growth have been previously identified, of which S100A6, S100A9, rabenosyn‑5 and programmed cell death 6‑interacting protein (PDCD6IP) were further validated and found to be upregulated in malignant tumours. The cancer cohort from our previous study was subclassified to assess whether distinct molecular markers can be identified for each individual cancer type using a similar approach. Urine samples from patients with cancers of the stomach, oesophagus, oesophagogastric junction or pancreas were analysed by surface‑enhanced laser desorption/ionization‑time‑of‑flight mass spectrometry using both CM10 and IMAC30 (Cu2+‑complexed) chip types and LC‑MS/MS‑based mass spectrometry after chromatographic enrichment. This was followed by protein identification, pattern matching and validation by western blotting. We found 8 m/z peaks with statistical significance for the four cancer types investigated, of which m/z 2447 and 2577 were identified by pattern matching as fragments of cathepsin‑B (CTSB) and cystatin‑B (CSTB); both molecules are indicative of pancreatic cancer. Additionally, we observed a potential association of upregulated α‑1‑antichymotrypsin with pancreatic and gastric cancers, of PDCD6IP, vitelline membrane outer layer protein 1 homolog (VMO1) and triosephosphate isomerase (TPI1) with oesophagogastric junctional cancers, and of complement C4‑A, prostatic acid phosphatase, azurocidin and histone‑H1 with oesophageal cancer. Furthermore, the potential pancreatic cancer biomarkers CSTB and CTSB were validated independently by western blotting. Therefore, the present study identified two new potential urinary biomarkers that appear to be associated with pancreatic cancer. This may provide a simple, non‑invasive screening test for use in the clinical setting.</p

    HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency.

    Get PDF
    Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment
    corecore