3 research outputs found

    In Vitro Fermentation of Browsable Native Shrubs in New Zealand

    No full text
    Information on the nutritive value and in vitro fermentation characteristics of native shrubs in New Zealand is scant. This is despite their potential as alternatives to exotic trees and shrubs for supplementary fodder, and their mitigation of greenhouse gases and soil erosion on hill-country sheep and beef farms. The objectives of this study were to measure the in vitro fermentation gas production, predict the parameters of the in vitro fermentation kinetics, and estimate the in vitro fermentation of volatile fatty acids (VFA), microbial biomass (MBM), and greenhouse gases of four native shrubs (Coprosma robusta, Griselinia littoralis, Hoheria populnea, and Pittosporum crassifolium) and an exotic fodder tree species, Salix schwerinii. The total in vitro gas production was higher (p < 0.05) for the natives than for the S. schwerinii. A prediction using the single-pool model resulted in biologically incorrect negative in vitro total gas production from the immediately soluble fraction of the native shrubs. However, the dual pool model better predicted the in vitro total gas production and was in alignment with the measured in vitro fermentation end products. The in vitro VFA and greenhouse gas production from the fermentation of leaf and stem material was higher (p < 0.05), and the MBM lower (p < 0.05), for the native shrubs compared to the S. schwerinii. The lower in vitro total gas production, VFA, and greenhouse gases production and higher MBM of the S. schwerinii may be explained by the presence of condensed tannins (CT), although this was not measured and requires further study. In conclusion, the results from this study suggest that when consumed by ruminant livestock, browsable native shrubs can provide adequate energy and microbial protein, and that greenhouse-gas production from these species is within the ranges reported for typical New Zealand pastures

    Bioeconomic Modelling to Assess the Impacts of Using Native Shrubs on the Marginal Portions of the Sheep and Beef Hill Country Farms in New Zealand

    No full text
    New Zealand hill country sheep and beef farms contain land of various slope classes. The steepest slopes have the lowest pasture productivity and livestock carrying capacity and are the most vulnerable to soil mass movements. A potential management option for these areas of a farm is the planting of native shrubs which are browsable and provide erosion control, biodiversity, and a source of carbon credits. A bioeconomic whole farm model was developed by adding a native shrub sub-model to an existing hill country sheep and beef enterprise model to assess the impacts on feed supply, flock dynamics, and farm economics of converting 10% (56.4 hectares) of the entire farm, focusing on the steep slope areas, to native shrubs over a 50-year period. Two native shrub planting rates of 10% and 20% per year of the allocated area were compared to the status quo of no (0%) native shrub plantings. Mean annual feed supply dropped by 6.6% and 7.1% causing a reduction in flock size by 10.9% and 11.6% for the 10% and 20% planting rates, respectively, relative to 0% native shrub over the 50 years. Native shrub expenses exceeded carbon income for both planting rates and, together with reduced income from sheep flock, resulted in lower mean annual discounted total sheep enterprise cash operating surplus for the 10% (New Zealand Dollar (NZD) 20,522) and 20% (NZD 19,532) planting scenarios compared to 0% native shrubs (NZD 22,270). All planting scenarios had positive Net Present Value (NPV) and was highest for the 0% native shrubs compared to planting rates. Break-even carbon price was higher than the modelled carbon price (NZD 32/ New Zealand Emission Unit (NZU)) for both planting rates. Combined, this data indicates planting native shrubs on 10% of the farm at the modelled planting rates and carbon price would result in a reduction in farm sheep enterprise income. It can be concluded from the study that a higher carbon price above the break-even can make native shrubs attractive in the farming system

    In Vitro Fermentation of Browsable Native Shrubs in New Zealand

    No full text
    Information on the nutritive value and in vitro fermentation characteristics of native shrubs in New Zealand is scant. This is despite their potential as alternatives to exotic trees and shrubs for supplementary fodder, and their mitigation of greenhouse gases and soil erosion on hill-country sheep and beef farms. The objectives of this study were to measure the in vitro fermentation gas production, predict the parameters of the in vitro fermentation kinetics, and estimate the in vitro fermentation of volatile fatty acids (VFA), microbial biomass (MBM), and greenhouse gases of four native shrubs (Coprosma robusta, Griselinia littoralis, Hoheria populnea, and Pittosporum crassifolium) and an exotic fodder tree species, Salix schwerinii. The total in vitro gas production was higher (p S. schwerinii. A prediction using the single-pool model resulted in biologically incorrect negative in vitro total gas production from the immediately soluble fraction of the native shrubs. However, the dual pool model better predicted the in vitro total gas production and was in alignment with the measured in vitro fermentation end products. The in vitro VFA and greenhouse gas production from the fermentation of leaf and stem material was higher (p p S. schwerinii. The lower in vitro total gas production, VFA, and greenhouse gases production and higher MBM of the S. schwerinii may be explained by the presence of condensed tannins (CT), although this was not measured and requires further study. In conclusion, the results from this study suggest that when consumed by ruminant livestock, browsable native shrubs can provide adequate energy and microbial protein, and that greenhouse-gas production from these species is within the ranges reported for typical New Zealand pastures
    corecore