471 research outputs found
Probing Dark Matter
Recent novel observations have probed the baryonic fraction of the galactic
dark matter that has eluded astronomers for decades. Late in 1993, the MACHO
and EROS collaborations announced in this journal the detection of transient
and achromatic brightenings of a handful of stars in the Large Magellanic Cloud
that are best interpreted as gravitational microlensing by low-mass foreground
objects (MACHOS). This tantalized astronomers, for it implied that the
population of cool, compact objects these lenses represent could be the elusive
dark matter of our galactic halo. A year later in 1994, Sackett et al. reported
the discovery of a red halo in the galaxy NGC 5907 that seems to follow the
inferred radial distribution of its dark matter. This suggested that dwarf
stars could constitute its missing component. Since NGC 5907 is similar to the
Milky Way in type and radius, some surmised that the solution of the galactic
dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et
al., using the Wide-Field Camera of the recently repaired Hubble Space
Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in
Nature 373, 191 (1995
Quantitative shadowgraphy and proton radiography for large intensity modulations
Shadowgraphy is a technique widely used to diagnose objects or systems in
various fields in physics and engineering. In shadowgraphy, an optical beam is
deflected by the object and then the intensity modulation is captured on a
screen placed some distance away. However, retrieving quantitative information
from the shadowgrams themselves is a challenging task because of the non-linear
nature of the process. Here, a novel method to retrieve quantitative
information from shadowgrams, based on computational geometry, is presented for
the first time. This process can be applied to proton radiography for electric
and magnetic field diagnosis in high-energy-density plasmas and has been
benchmarked using a toroidal magnetic field as the object, among others. It is
shown that the method can accurately retrieve quantitative parameters with
error bars less than 10%, even when caustics are present. The method is also
shown to be robust enough to process real experimental results with simple pre-
and post-processing techniques. This adds a powerful new tool for research in
various fields in engineering and physics for both techniques
Quantitative single shot and spatially resolved plasma wakefield diagnostics
Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefield density at known positions within the plasma column
Quantitative single shot and spatially resolved plasma wakefield diagnostics
Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefield density at known positions within the plasma column
The First Substellar Subdwarf? Discovery of a Metal-poor L Dwarf with Halo Kinematics
We present the discovery of the first L-type subdwarf, 2MASS
J05325346+8246465. This object exhibits enhanced collision-induced H
absorption, resulting in blue NIR colors (). In
addition, strong hydride bands in the red optical and NIR, weak TiO absorption,
and an optical/J-band spectral morphology similar to the L7 DENIS 02051159AB
imply a cool, metal-deficient atmosphere. We find that 2MASS 0532+8246 has both
a high proper motion, = 2\farcs60\pm0\farcs15 yr, and a
substantial radial velocity, km s, and its
probable proximity to the Sun (d = 10--30 pc) is consistent with halo
membership. Comparison to subsolar-metallicity evolutionary models strongly
suggests that 2MASS 0532+8246 is substellar, with a mass of 0.077 M
0.085 M_{\sun} for ages 10--15 Gyr and metallicities Z_{\sun}. The discovery of this object clearly indicates that star
formation occurred below the Hydrogen burning mass limit at early times,
consistent with prior results indicating a flat or slightly rising mass
function for the lowest-mass stellar subdwarfs. Furthermore, 2MASS 0532+8246
serves as a prototype for a new spectral class of subdwarfs, additional
examples of which could be found in NIR proper motion surveys.Comment: 9 pages, 3 figures, accepted to Ap
Epitaxial growth of cubic MnSb on GaAs AND InGaAs(111)
The cubic polymorph of the binary transition metal pnictide (TMP) MnSb, c-MnSb, has been predicted to be a robust half-metallic ferromagnetic (HMF) material with minority spin gap ≳1 eV. Here, MnSb epilayers are grown by molecular beam epitaxy (MBE) on GaAs and In0.5Ga0.5As(111) substrates and analyzed using synchrotron radiation X-ray diffraction. We find polymorphic growth of MnSb on both substrates, where c-MnSb co-exists with the ordinary niccolite n-MnSb polymorph. The grain size of the c-MnSb is of the order of tens of nanometer on both substrates and its appearance during MBE growth is independent of the very different epitaxial strain from the GaAs (3.1%) and In0.5Ga0.5As (0.31%) substrates
Neutrino Interactions in Hot and Dense Matter
We study the charged and neutral current weak interaction rates relevant for
the determination of neutrino opacities in dense matter found in supernovae and
neutron stars. We establish an efficient formalism for calculating differential
cross sections and mean free paths for interacting, asymmetric nuclear matter
at arbitrary degeneracy. The formalism is valid for both charged and neutral
current reactions. Strong interaction corrections are incorporated through the
in-medium single particle energies at the relevant density and temperature. The
effects of strong interactions on the weak interaction rates are investigated
using both potential and effective field-theoretical models of matter. We
investigate the relative importance of charged and neutral currents for
different astrophysical situations, and also examine the influence of
strangeness-bearing hyperons. Our findings show that the mean free paths are
significantly altered by the effects of strong interactions and the
multi-component nature of dense matter. The opacities are then discussed in the
context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure
The Spectra of T Dwarfs. II. Red Optical Data
We present 6300--10100 {\AA} spectra for a sample of 13 T dwarfs observed
using LRIS mounted on the Keck I 10m Telescope. A variety of features are
identified and analyzed, including pressure-broadened K I and Na I doublets;
narrow Cs I and Rb I lines; weak CaH, CrH, and FeH bands; strong HO
absorption; and a possible weak CH band. H emission is detected in
three of the T dwarfs, strong in the previously reported active T dwarf 2MASS
1237+6526 and weak in SDSS 12540122 and 2MASS 1047+2124. None of the T
dwarfs exhibit Li I absorption. Guided by the evolution of optical spectral
features with near-infrared spectral type, we derive a parallel optical
classification scheme, focusing on spectral types T5 to T8, anchored to select
spectral standards. We find general agreement between optical and near-infrared
types for nearly all of the T dwarfs so far observed, including two
earlier-type T dwarfs, within our classification uncertainties (1
subtype). These results suggest that competing gravity and temperature effects
compensate for each other over the 0.6--2.5 \micron spectral region. We
identify one possible means of disentangling these effects by comparing the
strength of the K I red wing to the 9250 {\AA} HO band. One of our objects,
2MASS 0937+2931, exhibits a peculiar spectrum, with a substantial red slope and
relatively strong FeH absorption, both consequences of a metal-deficient
atmosphere. Based on its near-infrared properties and substantial space motion,
this object may be a thick disk or halo brown dwarf.Comment: 22 pages including 9 figures, accepted to ApJ v594 Sept. 200
The Spectra of T Dwarfs I: Near-Infrared Data and Spectral Classification
We present near-infrared spectra for a sample of T dwarfs, including eleven
new discoveries made using the Two Micron All Sky Survey. These objects are
distinguished from warmer (L-type) brown dwarfs by the presence of methane
absorption bands in the 1--2.5 \micron spectral region. A first attempt at a
near-infrared classification scheme for T dwarfs is made, based on the
strengths of CH and HO bands and the shapes of the 1.25, 1.6, and 2.1
\micron flux peaks. Subtypes T1 V through T8 V are defined, and spectral
indices useful for classification are presented. The subclasses appear to
follow a decreasing T scale, based on the evolution of CH and
HO bands and the properties of L and T dwarfs with known distances.
However, we speculate that this scale is not linear with spectral type for cool
dwarfs, due to the settling of dust layers below the photosphere and subsequent
rapid evolution of spectral morphology around T 1300--1500 K.
Similarities in near-infrared colors and continuity of spectral features
suggest that the gap between the latest L dwarfs and earliest T dwarfs has been
nearly bridged. This argument is strengthened by the possible role of CH as
a minor absorber shaping the K-band spectra of the latest L dwarfs. Finally, we
discuss one peculiar T dwarf, 2MASS 0937+2931, which has very blue
near-infrared colors (J-K = 0.24) due to suppression of the 2.1
\micron peak. The feature is likely caused by enhanced collision-induced
H absorption in a high pressure or low metallicity photosphere.Comment: 74 pages including 26 figures, accepted by ApJ v563 December 2001;
full paper including all of Table 3 may be downloaded from
http://www.gps.caltech.edu/~pa/adam/classification ;also see submission
010844
Swift-UVOT detection of GRB 050318
We present observations of GRB 050318 by the Ultra-Violet and Optical
Telescope (UVOT) on-board the Swift observatory. The data are the first
detections of a Gamma Ray Burst (GRB) afterglow decay by the UVOT instrument,
launched specifically to open a new window on these transient sources. We
showcase UVOTs ability to provide multi-color photometry and the advantages of
combining UVOT data with simultaneous and contemporaneous observations from the
high-energy detectors on the Swift spacecraft. Multiple filters covering
1,800-6,000 Angstroms reveal a red source with spectral slope steeper than the
simultaneous X-ray continuum. Spectral fits indicate that the UVOT colors are
consistent with dust extinction by systems at z = 1.2037 and z = 1.4436,
redshifts where absorption systems have been pre-identified. However, the data
can be most-easily reproduced with models containing a foreground system of
neutral gas redshifted by z = 2.8 +/- 0.3. For both of the above scenarios,
spectral and decay slopes are, for the most part, consistent with fireball
expansion into a uniform medium, provided a cooling break occurs between the
energy ranges of the UVOT and Swifts X-ray instrumentation.Comment: 15 pages, 4 figures, ApJ Letters, in pres
- …