1,287 research outputs found
Seven-month developmental outcomes of very low birth weight infants enrolled in a randomized controlled trial of delayed versus immediate cord clamping
Objective: The results from our previous trial revealed that infants with delayed cord clamping (DCC) had significantly lesser intraventricular hemorrhage (IVH) and late-onset sepsis (LOS) than infants with immediate cord clamping (ICC). A priori, we hypothesized that infants with DCC would have better motor function by 7 months corrected age.
Study Design: Infants between 24 and 31 weeks were randomized to ICC or DCC and follow-up evaluation was completed at 7 months corrected age.
Result: We found no differences in the Bayley Scales of Infant Development (BSID) scores between the DCC and ICC groups. However, a regression model of effects of DCC on motor scores controlling for gestational age, IVH, bronchopulmonary dysplasia, sepsis and male gender suggested higher motor scores of male infants with DCC.
Conclusion: DCC at birth seems to be protective of very low birth weight male infants against motor disability at 7 months corrected age
Brachial Artery Vasculitis and Associated Stenosis Presenting as Elbow Pain in a 16-Year-Old Soccer Player: A Case Report
Chronic vascular occlusion in the upper extremity can result from repetitive trauma, atherosclerosis, proximal embolic events, hypercoagulable states, and systemic diseases such as collagen vascular disease and vasculitis. Considerable functional impairment can result from these maladies; however, sometimes the condition develops slowly with minimal effect on the patient. We describe a 16-year-old soccer player with slow-progressing elbow pain and loss of range in motion caused by brachial artery vasculitis and resultant brachial arterial stenosis. Although vascular insults and lesions rarely cause chronic vascular occlusion, physicians should consider this possibility in patients with localized pain or atrophy, especially if the condition develops slowly
Effects of Delayed Cord Clamping on 4-Month Ferritin Levels, Brain Myelin Content, and Neurodevelopment: A Randomized Controlled Trial
Objective To evaluate whether placental transfusion influences brain myelination at 4 months of age. Study design A partially blinded, randomized controlled trial was conducted at a level III maternity hospital in the US. Seventy-three healthy term pregnant women and their singleton fetuses were randomized to either delayed umbilical cord clamping (DCC, \u3e5 minutes) or immediate clamping (ICC, \u3c20 \u3eseconds). At 4 months of age, blood was drawn for ferritin levels. Neurodevelopmental testing (Mullen Scales of Early Learning) was administered, and brain myelin content was measured with magnetic resonance imaging. Correlations between myelin content and ferritin levels and group-wise DCC vs ICC brain myelin content were completed. Results In the DCC and ICC groups, clamping time was 172 ± 188 seconds vs 28 ± 76 seconds (P \u3c .002), respectively; the 48-hour hematocrit was 57.6% vs 53.1% (P \u3c .01). At 4 months, infants with DCC had significantly greater ferritin levels (96.4 vs 65.3 ng/dL, P = .03). There was a positive relationship between ferritin and myelin content. Infants randomized to the DCC group had greater myelin content in the internal capsule and other early maturing brain regions associated with motor, visual, and sensory processing/function. No differences were seen between groups in the Mullen testing. Conclusion At 4 months, infants born at term receiving DCC had greater ferritin levels and increased brain myelin in areas important for early life functional development. Endowment of iron-rich red blood cells obtained through DCC may offer a longitudinal advantage for early white matter development
Estimating the horizontal and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea
Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3282, doi:10.1121/1.4818843.Conventional and adaptive plane-wave beamforming with simultaneous recordings by large-aperture horizontal and vertical line arrays during the 2009 Philippine Sea Engineering Test (PhilSea09) reveal the rate of occurrence and the two-dimensional arrival structure of seismic phases that couple into the deep ocean. A ship-deployed, controlled acoustic source was used to evaluate performance of the horizontal array for a range of beamformer adaptiveness levels. Ninety T-phases from unique azimuths were recorded between Yeardays 107 to 119. T-phase azimuth and S-minus-P-phase time-of-arrival range estimates were validated using United States Geological Survey seismic monitoring network data. Analysis of phases from a seismic event that occurred on Yearday 112 near the east coast of Taiwan approximately 450 km from the arrays revealed a 22° clockwise evolution of T-phase azimuth over 90 s. Two hypotheses to explain such evolution—body wave excitation of multiple sources or in-water scattering—are presented based on T-phase origin sites at the intersection of azimuthal great circle paths and ridge/coastal bathymetry. Propagation timing between the source, scattering region, and array position suggests the mechanism behind the evolution involved scattering of the T-phase from the Ryukyu Ridge and a T-phase formation/scattering location estimation error of approximately 3.2 km.This research is supported
by the Office of Naval Research, both the Applied Research
Laboratory program and Code 322(OA)
Pandemic (H1N1) 2009 influenza community transmission was established in one Australian state when the virus was first identified in North America
BACKGROUND In mid-June 2009 the State of Victoria in Australia appeared to have the highest notification rate of pandemic (H1N1) 2009 influenza in the world. We hypothesise that this was because community transmission of pandemic influenza was already well established in Victoria at the time testing for the novel virus commenced. In contrast, this was not true for the pandemic in other parts of Australia, including Western Australia (WA). METHODS We used data from detailed case follow-up of patients with confirmed infection in Victoria and WA to demonstrate the difference in the pandemic curve in two Australian states on opposite sides of the continent. We modelled the pandemic in both states, using a susceptible-infected-removed model with Bayesian inference accounting for imported cases. RESULTS Epidemic transmission occurred earlier in Victoria and later in WA. Only 5% of the first 100 Victorian cases were not locally acquired and three of these were brothers in one family. By contrast, 53% of the first 102 cases in WA were associated with importation from Victoria. Using plausible model input data, estimation of the effective reproductive number for the Victorian epidemic required us to invoke an earlier date for commencement of transmission to explain the observed data. This was not required in modelling the epidemic in WA. CONCLUSION Strong circumstantial evidence, supported by modelling, suggests community transmission of pandemic influenza was well established in Victoria, but not in WA, at the time testing for the novel virus commenced in Australia. The virus is likely to have entered Victoria and already become established around the time it was first identified in the US and Mexico
Analysis of Deep Seafloor Arrivals observed on NPAL04
This report gives an overview of the analysis that was done on Deep Seafloor Arrivals since they
were initially presented in Stephen et al (2009). All of the NPAL04/LOAPEX (North Pacific
Acoustic Laboratory, 2004/ Long Range Ocean Acoustic Propagation Experiment) data on three
ocean bottom seismometers (OBSs) at ~5,000m depth and the deepest element of the deep
vertical line array (DVLA) at 4250m depth has been analyzed. A distinctive pattern of late
arrivals was observed on the three OBSs for transmissions from T500 to T2300. The delays of
these arrivals with respect to the parabolic equation predicted (PEP) path were the same for all
ranges from 500 to 2300km, indicating that the delay was introduced near the receivers. At
500km range the same arrival was observed throughout the water column on the DVLA. We
show that arrivals in this pattern converted from a PEP path to a bottom-diffracted surface
reflected (BDSR) path at an off-geodesic seamount.Funding was provided by the Office of Naval Research under Contract No. N00014-10-1-0510
Weakly dispersive modal pulse propagation in the North Pacific Ocean
Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America or personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3386, doi:10.1121/1.4820882.The propagation of weakly dispersive modal pulses is investigated using data collected during the 2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal pulses are characterized by weak dispersion- and scattering-induced pulse broadening; such modal pulses experience minimal propagation-induced distortion and are thus well suited to communications applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dispersive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly dispersive modal pulse, a transmitted communications signal can be recovered without performing channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR) and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR result in larger BERs.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-06-1-0245, N00014-08-1-0195, and N00014-11-1-0194
Modal analysis of the range evolution of broadband wavefields in the North Pacific Ocean : low mode numbers
Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4409-4427, doi:10.1121/1.4707431.The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-08-1-0195, N00014-06-1-0245, and N0014-11-1-0194
Optimisation of a lozenge-based sensor for detecting impending blockage of urinary catheters
Catheter-associated urinary tract infections resulting from urease-positive microorganisms are more likely to cause a urinary catheter blockage owing to the urease activity of the microbes. Catheter blockage can be dangerous and increases the risk of severe infections, such as sepsis. Ureases, a virulence factor in Proteus mirabilis, cause an increase in urine pH - leading to blockage. An optimised biosensor "lozenge" is presented here, which is able to detect impending catheter blockage. This lozenge has been optimised to allow easy manufacture and commercialisation. It functions as a sensor in a physiologically representative model of a catheterised urinary tract, providing 6.7 h warning prior to catheter blockage. The lozenge is stable in healthy human urine and can be sterilized for clinical use by ethylene oxide. Clinically, the lozenge will provide a visible indication of impending catheter blockage, enabling quicker clinical intervention and thus reducing the morbidity and mortality associated with blockage.</p
- …