4,064 research outputs found

    Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters

    Get PDF
    Modern semiempirical methods are of sufficient accuracy when used in the modeling of molecules of the same type as used as reference data in the parameterization. Outside that subset, however, there is an abundance of evidence that these methods are of very limited utility. In an attempt to expand the range of applicability, a new method called PM7 has been developed. PM7 was parameterized using experimental and high-level ab initio reference data, augmented by a new type of reference data intended to better define the structure of parameter space. The resulting method was tested by modeling crystal structures and heats of formation of solids. Two changes were made to the set of approximations: a modification was made to improve the description of noncovalent interactions, and two minor errors in the NDDO formalism were rectified. Average unsigned errors (AUEs) in geometry and ΔH(f) for PM7 were reduced relative to PM6; for simple gas-phase organic systems, the AUE in bond lengths decreased by about 5 % and the AUE in ΔH(f) decreased by about 10 %; for organic solids, the AUE in ΔH(f) dropped by 60 % and the reduction was 33.3 % for geometries. A two-step process (PM7-TS) for calculating the heights of activation barriers has been developed. Using PM7-TS, the AUE in the barrier heights for simple organic reactions was decreased from values of 12.6 kcal/mol(-1) in PM6 and 10.8 kcal/mol(-1) in PM7 to 3.8 kcal/mol(-1). The origins of the errors in NDDO methods have been examined, and were found to be attributable to inadequate and inaccurate reference data. This conclusion provides insight into how these methods can be improved. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00894-012-1667-x) contains supplementary material, which is available to authorized users

    Convergence of the Many-Body Expansion of Interaction Potentials: From van der Waals to Covalent and Metallic Systems

    Get PDF
    The many-body expansion of the interaction potential between atoms and molecules is analyzed in detail for different types of interactions involving up to seven atoms. Elementary clusters of Ar, Na, Si, and, in particular, Au are studied, using first-principles wave-function- and density-functional-based methods to obtain the individual n-body contributions to the interaction energies. With increasing atom number the many-body expansion converges rapidly only for long-range weak interactions. Large oscillatory behavior is observed for other types of interactions. This is consistent with the fact that Au clusters up to a certain size prefer planar structures over the more compact three-dimensional Lennard-Jones-type structures. Several Au model potentials and semi-empirical PM6 theory are investigated for their ability to reproduce the quantum results. We further investigate small water clusters as prototypes of hydrogen-bonded systems. Here, the many-body expansion converges rapidly, reflecting the localized nature of the hydrogen bond and justifying the use of two-body potentials to describe water-water interactions. The question of whether electron correlation contributions can be successfully modeled by a many-body interaction potential is also addressed

    Insulin-like growth factor binding protein-5 modulates muscle differentiation through an insulin-like growth factor-dependent mechanism.

    Get PDF
    The insulin-like growth factor binding proteins (IGFBPs) are a family of six secreted proteins which bind to and modulate the actions of insulin-like growth factors-I and -II (IGF-I and -II). IGFBP-5 is more conserved than other IGFBPs characterized to date, and is expressed in adult rodent muscle and in the developing myotome. We have shown previously that C2 myoblasts secrete IGFBP-5 as their sole IGFBP. Here we use these cells to study the function of IGFBP-5 during myogenesis, a process stimulated by IGFs. We stably transfected C2 cells with IGFBP-5 cDNAs under control of a constitutively active promoter. Compared with vector-transfected control cells, C2 myoblasts expressing the IGFBP-5 transgene in the sense orientation exhibit increased IGFBP-5 levels in the extracellular matrix during proliferation, and subsequently fail to differentiate normally, as assessed by both morphological and biochemical criteria. Compared to controls, IGFBP-5 sense myoblasts show enhanced survival in low serum medium, remaining viable for at least four weeks in culture. By contrast, myoblasts expressing the IGFBP-5 antisense transcript differentiate prematurely and more extensively than control cells. The inhibition of myogenic differentiation by high level expression of IGFBP-5 could be overcome by exogenous IGFs, with des (1-3) IGF-I, an analogue with decreased affinity for IGFBP-5 but normal affinity for the IGF-I receptor, showing the highest potency. These results are consistent with a model in which IGFBP-5 blocks IGF-stimulated myogenesis, and indicate that sequestration of IGFs in the extracellular matrix could be a possible mechanism of action. Our observations also suggest that IGFBP-5 normally inhibits muscle differentiation, and imply a role for IGFBP-5 in regulating IGF action during myogenic development in vivo

    High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    Full text link
    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.Comment: 8 pages, 8 figures, Accepted by MNRA

    Understanding the potential of phosphorus transport to water resources via leaching

    Get PDF
    Improved management of phosphorus (P) from both manure and fertilizer sources is important because of surface water quality concerns. This study considers possible P loss via leaching through the soil and examines the dynamics of the adsorption/extraction process

    Recovery of absolute absorption line shapes in tunable diode laser spectroscopy using external amplitude modulation with balanced detection

    Get PDF
    Accurate recovery of an absorption lineshape is important in many industrial applications for simultaneous measurement of gas concentration and pressure or temperature. Here we demonstrate a method, based on a modification to the Hobbs balanced receiver circuit, for background signal nulling when external amplitude modulation of the laser output is used. Compared with direct or non-nulled detection techniques, we demonstrate that the method significantly improves the signal to noise ratio to a level comparable to that of conventional second harmonic wavelength modulation spectroscopy. Most importantly, normalisation and recovery of the lineshape is straightforward and immune to the difficulties that afflict lineshape recovery with conventional wavelength modulation spectroscopy

    Allosteric modulation of zinc speciation by fatty acids

    Get PDF
    Background: Serum albumin is the major protein component of blood plasma and is responsible for the circulatory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies examining the ligand-binding properties of albumin make up a large proportion of the literature. However, many of these studies do not address the fact that albumin carries multiple ligands (including metal ions) simultaneously in vivo. Thus the binding of a particular ligand may influence both the affinity and dynamics of albumin interactions with another. Scope of review: Here we review the Zn2 + and fatty acid transport properties of albumin and highlight an important interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma Zn2 +, its effect upon cellular Zn2 + uptake and its importance in the diagnosis of myocardial ischemia are considered. Major conclusions: We previously identified the major binding site for Zn2 + on albumin. Furthermore, we revealed that Zn2 +-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the binding of fatty acids to albumin may serve as an allosteric switch to modulate Zn2 +-binding to albumin in blood plasma. General significance: Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn2 + to albumin is important for the control of circulatory/cellular Zn2 + dynamics, this relationship is likely to have important physiological and pathological implications. This article is part of a Special Issue entitled Serum Albumin
    corecore